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Abstract—We present a learning-based local controller for
pedestrian simulation in iGibson. We explore the feasibility of
leveraging datasets of pedestrian trajectories to learn a model
for socially-aware pedestrian simulation in indoor constrained
environments. Based on previous work on pedestrian prediction,
we augment Social-GAN with information on static obstacles,
pedestrian trajectory histories, and pedestrian goals in order to
use the architecture for human-like trajectory generation. In on-
going work, we empirically find that his local controller exhibits
more realistic interactive behaviors than commonly used models
in social navigation research such as ORCA.

I. INTRODUCTION

Recent work on robot learning for social navigation lever-
ages simulation environments within realistic indoor spaces
populated with simulated pedestrians [16], such as the sim-
ulation shown in Fig.1. The protocol for optimal reciprocal
collision avoidance (ORCA), which is frequently used in social
navigation studies [5], generates pedestrian motion commands
per time step by solving a linear program with known veloc-
ities of all the agents, and guarantees multi-agent collision
avoidance. Each agent computes its velocity independently
with no explicit communication (other than full observabil-
ity of all instant velocities). However, the ORCA protocol
is limited for simulating pedestrians in indoor constrained
environments with concave obstacles, turns or complex high-
level planning. ORCA requires coordination among all agents
[16], dividing the responsibility for collision avoidance equally
among the interacting agents, with no explicit modelling of
human-like social interactions. ORCA also fails to address the
multi-modal nature of pedestrian behaviors.

We focus on developing a learning-based socially-aware
local controller for pedestrian simulation. By incorporating
information on static obstacles, pedestrian trajectory histories,
and pedestrian goals, we empirically find that this local
controller exhibits more realistic interactive behaviors. Our
method uses a pedestrian prediction method as a generative
model for interactive pedestrian trajectories, by augmenting
social-GAN [8] with additional inputs for pedestrians goals
and environment map, resulting on a method that is goal
oriented and considers static obstacles and the physical con-
straints of the layouts. Our proposed architecture is shown in
Fig. 2.

II. RELATED WORK

Bringing dynamic pedestrians into simulated robotic train-
ing environments has been identified to be crucial for robots
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Fig. 1: Top view of a simulated environment in iGibson, with two
pedestrians moving towards a door. This common situation in indoor
environments requires the simulated pedestrians to exhibit human-like
behaviors.

to learn socially complaint navigation policies. Related work
covers both analytical and learning based methods.

A. Analytical Simulation

There are two major approaches to modeling pedestrian
dynamics in existing simulators. The first approach is the
social force model proposed by Helbing and Molnar [10],
which has been implemented in simulators such as Gazebo
[19]. The social forces model is based on the physics rule that
the accelerations of the pedestrians are proportional to the sum
of forces applied to them. This set of forces is modelled after
social behaviors. Since the social force model is based on
handcrafted features, it could only reflect the pre-defined set
of pedestrian navigation rules.

There are also significant efforts in constructing complete
pipelines for pedestrian simulation including high level plan-
ning, such as in Menge [6]. Similar to our approach, Menge
decouples the pedestrian simulation pipeline into four mod-
ules: goal selection, plan computation, plan adaptation, and
motion synthesis. We seek a learning method with the goal of
achieving simulated behaviors that resemble those of human
navigation.

B. Learning-Based Trajectory Forecasting

Pedestrian trajectory forecasting algorithms leverage learn-
ing methods including Generative Models [8][19][2][17],
LSTM (encoder-decoder) based algorithms [1][3], and vari-
ational learning approaches [4] to forecast socially acceptable
human trajectories with the generator or decoder. A significant



Fig. 2: Overview of our pedestrian simulation pipeline. The iGibson global planner creates a set of waypoints that the local planner uses as
short-term goals. The local planner also takes the occupancy map of iGibson’s indoor environment and trajectory histories of each pedestrians
as input and predicts the next positions for each pedestrian. The trajectory history is initialized by running the default ORCA simulator for
first 7 time steps (i.e. t < 8) of each episodes.

advantage of the learning method is its ability to generate
pedestrian behaviors based on real human data and avoid the
need for hand-crafting properties of pedestrians. In addition,
learning approaches address the multi-modality nature [4] of
human trajectories.

Existing methods of pedestrian trajectory forecasting mainly
focus on modeling the social behaviors and they do not have
access to privileged scene information that is only pertinent to
simulation environments. To this end, we adapt the pedestrian
forecasting algorithm to the task of pedestrian simulation for
iGibson [18] with the additional knowledge of (1) the static
environment surrounding the pedestrians, (2) the navigation
goals of the pedestrian, and (3) the desired velocity offered
by the global planner. This allows our local path planner to
navigate the pedestrians without collisions in iGibson-specific
indoor environments while still maintaining social interactions
between pedestrians.

III. METHODS

We follow a hierarchical paradigm for simulating interac-
tions between pedestrians in iGibson indoor environments. In
particular, the hierarchy is composed of two levels: Global
Planning to construct coarse-grained waypoints to guide
pedestrians towards their goals, and Local Planning to refine
global waypoints and control pedestrian positions exactly at
each timestep. Such pipeline, combining global plan generator
with learning models for local-replan, is also found to be
effective in robot navigation problems for generating socially
complaint actions towards the goal [15]. Figure 2 shows an
overview of our pedestrian simulation pipeline.

A. Global Planning for Waypoint Generation

The global planner constructs a graph that connects all open
locations on the occupancy map with weighted edges equal to
the L2 distance between each pair of nodes.

For each pedestrian i, we then sample a goal position
pi,goal = (xi,goal, yi,goal) and a start position pi,0 =

(xi,0, yi,0) such that pi,goal, pi,0 ∈ Sopen. The global planner
takes in these two positions and runs A∗ algorithm [9] to find
the shortest path to reach goal.

B. Local Planning for Social Trajectory Generation

Socially acceptable behavior is difficult to model exactly
using analytical methods. To this end, we leverage learning-
based generative methods to imitate human trajectories col-
lected from real-world data. Figure 3 shows the architecture
for our local planner.

1) Problem Definition: Our goal is to simultaneously pre-
dict the positions of all n pedestrians in the next time step.
The local planner takes as input the trajectory history for all
pedestrians in the scene as X = X1, X2, ...Xn, a floorplan
I as the occupancy map, and a set of waypoints leading to
pgoal = p1,goal, p2,goal, ...pn,goal. The local planner will then
predict the future positions as Ŷ = Y1, Y2, ...Yn. For each
pedestrian i, its trajectory history at time t ≥ 8 is defined
as Xi = {(x(t−7)

i , y
(t−7)
i ...(xt

i, y
t
i)} and its goal position is

given by the global planner. The trajectory history for t < 8
is collected by running the default ORCA simulator. The
pedestrian’s position prediction for time t + 1 is denoted by
Ŷi = (x

(t+1)
i , y

(t+1)
i ) and during training, its ground-truth next

position is denoted by Yi.
2) Learning Social Interactions using GAN: Inspired by

Social GAN [8], our local planner uses the same social pooling
module and the GAN-based encoder-decoder architecture.
The generator takes as input the trajectory history X , static
occupancy map I and short-term goal positions ggoal and
outputs predicted future positions Ŷ . In both the generator
and discriminator, each pedestrian trajectory history is encoded
by a separate sequence of LSTM cells. To encode the social
interactions between pedestrians, we use the same social
pooling module proposed by Social GAN. The extracted social
feature is then concatenated with the output from the last
LSTM cell in the encoder.



Fig. 3: Proposed model. We use the GAN-based encoder-decoder structure and pooling layer from Social GAN [8] as our backbone model,
and incorporate the knowledge of pedestrian short-term goal positions and local obstacles so that the local controller can better follow the
global plan while avoiding local collisions.

The decoder generates the future trajectories conditioned on
the concatenated features. During training, the discriminator
takes two sequences: X with Ŷ and X with ground-truth Y ,
and classifies them as real or synthetic (unlikely to come from
real dataset). This encourages the generator to output future
trajectory predictions that are consistent with the ground-truth
human trajectories, i.e. imitate the social behavior in human
navigation.

3) Local Navigation Using Immediate Goals: Unlike tradi-
tional trajectory forecasting datasets, our pedestrians have pre-
defined goals that they are trying to reach. Since the global
planner has provided a list of coarse waypoints, we define
the short-term goal positions of each pedestrian as gi. The
coarse waypoints are achieved through joining collinear dense
waypoints based on the shortest path to the final goal computed
with the traverse map of the environment. For each pedestrian,
their goal position is projected to a higher dimension space
through a linear layer and the learned representation is con-
catenated with the LSTM outputs and the noise term as the
input to decoder, inspired by [7] and [11].

Note that different from [11] that predicts, the intermediate
goals are known in the simulation environment; therefore, we
replaced the probability distribution of pedestrian’s intent in
[11] with global planner outputs.

4) Extracting Obstacle Information using CNN: One chal-
lenge for simulating and navigating pedestrians in iGibson is
that the indoor environment is cluttered with static objects.
Instead of using ORCA [20] to avoid collisions, we choose to
use a learning-based perception system to achieve the same
goal. Specifically, we use a pre-trained AlexNet [12] model
to extract obstacle information from the occupancy map and
concatenate the learned map feature with the LSTM outputs
before the decoder.

IV. EXPERIMENTS AND RESULTS

In this section, we will describe three sets of experiments
and results to evaluate this learning-based socially-aware
method.

A. Experiment 1: Benchmark with Trajectory Forecasting

Since we base our method on a trajectory forecasting
method, we first evaluate the proposed architecture in a
pedestrian prediction task and validate its functionality. We
adapt the Social GAN architecture and train our model using
ETH [14] and UCY [13] datasets. We use standard trajectory
forecasting benchmarks to evaluate our model performance.
Specifically, we use Average Displacement Error (ADE) and
Final Displacement Error (FDE). We compare our results
against two baselines: 1) Social GAN, since our model is a
variant of it; and 2) Social-VRNN since it also uses a global
occupancy map for producing predictions. Table I shows the
results of leave-one-out (dataset) validation. We train the
models on all ETH/UCY datasets except for the one we are
evaluating on (ZARA01), following the same conventions as
that of [8]. In addition, we obtain the quantitative results with
8 time steps of history trajectory observations (tobs = 8), and
predict 8 steps of future positions (tpred = 8). We find that
the proposed architecture has comparable or improved results
over other prediction methods.

B. Experiment 2: Reaching Goals in iGibson

Although our problem is similar to trajectory forecasting
setup, our setting is different in several ways: 1) iGibson
is a simulation environment with indoor scenes whereas
ETH/UCY recorded in scenes; 2) the pedestrian trajectory
forecasting model trained on ETH/UCY datasets is associated
to fixed length pedestrian trajectories while in iGibson, the
episode length is variable and our pedestrians have a goal
position to reach.

To evaluate whether our local controller can move pedes-
trians toward their goals, we conduct several trials of the
experiment in iGibson with the different number of pedestrians
spawned in the scene and count the number of times that the
pedestrians reach their pre-defined goals. Results in Table II
indicate that all of the pedestrians in all of the scenarios could
achieve their goals in a reasonable amount of time comparing
to the default setting of social navigation task, which is 100



Metric SGAN Social-VRNN SGAN + goal SGAN + goal + image (partial)

FDE 0.42 0.70 0.07 0.27
ADE 0.21 0.41 0.07 0.17

TABLE I: Pedestrian prediction results of all methods. The methods are trained on ETH/UCY trajectory forecasting benchmark and
evaluated on ZARA01 dataset. We report FDE (Final Displacement Error) and ADE (Average Displacement Error) metrics for tpred = 8.
Our approaches consistently outperform the baseline models in both of the metrics (lower is better).

Num Pedestrians / Num Goals Total Time Steps Parity (ped id : num goals reached)

2/3 227 0: 3, 1: 3
2/5 300 0: 5, 1: 8
3/3 139 0: 3, 1: 4, 2: 3
3/5 280 0: 5, 1: 5, 2: 5
5/3 265 0: 5, 1: 5, 2: 5, 3: 5, 4: 7

TABLE II: Quantitative results measuring the pedestrians’ abilities of reaching their final goals in iGibson environment with the modified
SGAN model and the simulation pipeline. Pedestrians in all of the scenarios reach their goals in reasonable time spans. The parity measurement
shows that no pedestrian is blocked from reaching the goals with our simulation approach.

(a) Modified Social GAN (b) ORCA radius = 0.5m (c) ORCA radius = 0.1m (d) ORCA radius = 0m

Fig. 4: Sample trajectory plots of two pedestrians going across the door from different directions in iGibson environment. “*” denotes the
most recent time step and “.” denotes three history time steps. Only modified SGAN approach exhibit a collision-free and socially acceptable
manner in the scenario.

time steps per episode

C. Experiment 3: Evaluating Social Interaction

The main objective for our local planner is to add social
interaction between pedestrians in simulation. While analytical
methods like ORCA are effective in avoiding local obstacles,
they do not take social behaviors into consideration. In this
experiment, we compare the paths two pedestrians take when
going through a door generated by ORCA and our model.

We simulate the same scenario with 4 different pedes-
trian controllers/controller settings, shown in Figure 4b. The
scenario consists of two pedestrians with predefined initial
positions and goals that drive the pedestrians to navigate to
the other side of the door from different initial directions.

As shown in Figure 4b, when the two pedestrians are
controlled by the baseline ORCA algorithm using default
ORCA radius of 0.5m, the pedestrians are blocked due to the
lack of free space for ORCA’s collision avoidance mechanism
(across the narrow door as shown in Figure 1. In addition,
if we decrease the ORCA radius to 0.1m, although the two
pedestrians could successfully reach their goals, as shown in
Figure 4c, the pedestrians’ trajectories form a circular pattern
with a radius around 0.1m. This is because ORCA distributes

the collision avoidance responsibilities equally among the
pedestrians.

If we use the same simulation scenario but replace ORCA
with our learning-based local controller, we can see that the
blue pedestrian stops to let the red pedestrian with faster speed
to pass first. Moreover, the pedestrians successfully figure
out collision-free and socially acceptable movements to pass
through the door without sticking their trajectories to a circular
pattern.

V. CONCLUSION

We follow a hierarchical paradigm for pedestrian path
planning and control in iGibson. The global planner generates
a list of waypoints that guide each pedestrian towards their
goal while the learning-based local planner refines the local
plan of each pedestrian. The results indicate that even when
training on ETH/UCY dataset collected in open space, our
local planner can learn from real human trajectory data and
still shows human-like and socially acceptable interactions in
indoor navigation tasks. Moreover, it shows improvement over
ORCA in the socially-relevant test case of two pedestrians
going through the door. Videos of the simulation are available
at https://sites.google.com/view/int-pedestrians/.

https://sites.google.com/view/int-pedestrians/
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