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Abstract—Robots and autonomous systems must interact with
one another and their environment to provide high-quality ser-
vices to their users. Dynamic game theory provides an expressive
theoretical framework for modeling scenarios involving multiple
agents with differing objectives interacting over time. A core
challenge when formulating a dynamic game is designing objec-
tives for each agent that capture desired behavior. In this paper,
we propose a method for inferring parametric objective models
of multiple agents based on observed interactions. Our inverse
game solver jointly optimizes player objectives and continuous
state estimates by coupling them through Nash equilibrium
constraints. Hence, our method is able to directly maximize the
observation likelihood rather than other non-probabilistic surro-
gate criteria. We demonstrate our method in a simulated highway
driving scenario. Results show that it reliably estimates player
objectives from a short sequence of noise-corrupted, partial state
observations. Furthermore, using the estimated objectives, our
method makes accurate predictions of each player’s trajectory.

I. INTRODUCTION

Most robots use motion planning and optimal control
methods to select and execute actions when operating in the
real world. These methods perform well in settings with a
single robot operating in a well-characterized environment.
However, such techniques formalize optimal decision-making
for a single agent and are not directly suitable for inter-
active settings with multiple strategic agents. For example,
consider multiple vehicles engaged in lane changes on a
crowded highway as shown in Figure 1. In this setting,
standard motion planning techniques may still be applied by
first predicting the future trajectories of other agents and
then planing one’s own reactions. However, each agent’s
optimal behavior in the future depends upon the decisions
of everyone else; sequential prediction and planning schemes
fail to capture this coupling. Instead, this setting is more
accurately characterized as a dynamic game. Despite the
added complexity of modeling these interactions, recent de-
velopments enable computationally-efficient solutions to the
noncooperative dynamic games which arise in multi-agent
robotic settings [8, 10, 11, 14].

Like single-player optimal control techniques, dynamic
games recover optimal behavior from given objectives. In
contrast to their single-player counterparts, however, each
player can have an individual objective, and objectives of dif-
ferent players may conflict. Hence, the solution of a dynamic
game does not generally optimize a single utility function for
all agents simultaneously. Instead, solutions are equilibria in
which each player optimize their own utility while accounting
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Fig. 1. Inverse and forward versions of a dynamic game modeling a 5-player
highway driving scenario. The solution of the forward problem maps the
player objectives (left) to the players’ optimal strategies (right). Our method
solves the inverse problem: it takes noisy, partial state observations of multi-
agent interaction as input to recover an objective model for each player that
explains the the observed behavior. The inferred objectives defines an abstract
game-theoretic behavior model that can be used to predict player strategies
for arbitrary agent configurations.

for the possibly noncooperative behavior of other agents. In
general, there can be multiple equilibria in a game, each
of which corresponds to a potential mode of interaction.
Recent work demonstrates the importance of planning one’s
own decisions to align with the equilibrium preferences of
others [16].

While games are an expressive mathematical framework for
modeling multi-agent interactions, they assume knowledge of
each players objectives. For example, in Figure 1 the vehicle
objectives define a dynamic game whose solution can be used
to predict vehicle strategies for arbitrary initial configurations.
That is, a (forward) game solver defines a mapping from
player objectives to player strategies; left to right in Figure 1.
However, if player objectives are unknown, the game is under-
specified and unusable for prediction. In that case, it may
be desirable to learn the player objectives from observed
behavior; right to left in Figure 1.
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In this paper and its full-length version [17], we study this
inverse dynamic game problem of identifying objectives from
noisy, partial state observations of multi-agent interactions.
Recovering these unknown parameters allows us to infer
important aspects of each player’s preferences. For example, in
the highway driving setting of Figure 1, one such preference is
each agent’s desire to avoid collisions with other vehicles. Our
proposed inverse game solution estimates all player’s states
and control inputs jointly with their unknown objective para-
meters by coupling them through noncooperative equilibrium
constraints. Based on simulated traffic scenarios, we evaluate
our method and provide comparisons to existing methods in a
Monte Carlo study. We show that our method is more robust
to incomplete state information and observation noise. As a
result, our method identifies player objectives more reliably,
and predicts player trajectories more accurately.

II. BACKGROUND: OPEN-LOOP NASH GAMES

This section offers a concise background on forward open-
loop Nash games. In this work, we use the term forward to
disambiguate this class of problems from that of learning costs
in games (i.e., inverse games). For a thorough treatment, refer
to Başar and Olsder [4].

An open-loop (infinite) Nash game with N players
is characterized by state x ∈ Rn and control in-
puts for each player ui ∈ Rmi

which follow dynam-
ics xt+1 = ft(xt, u

1
t , . . . , u

N
t ) at each discrete time t ∈

[T ] := {1, . . . , T}. Each player has a cost func-
tion1 J i :=

∑T
t=1 g

i
t(xt, u

1
t , . . . , u

N
t ), which is implicitly

a function of the initial condition x1 and explicitly of both
the control inputs for each player ui := (ui1, . . . , u

i
T ) and the

state trajectory x := (x1, . . . , xT ). The tuple of initial state,
joint dynamics, and player objectives which fully characterizes
a game is denoted Γ :=

(
x1, f, {J i}i∈[N ]

)
throughout this

work.
Given a sequence of control inputs for all players u :=

(u1, . . . ,uN ) the states are determined by the dynamics and
initial condition. Note that for clarity we use bold variables
to indicate aggregation over time and omit player indices to
further aggregate a quantity over all players. Hence, for short-
hand, we will overload cost notation to define J i(u;x1) ≡
J i(u1, . . . ,uN ;x1) ≡ J i(x,u1, . . . ,uN ).

Nash equilibria are solutions to the coupled optimization
problems, one for each player Pi:

∀i ∈ [N ]

{
min
x,ui

J i(u;x1) (1a)

s.t. xt+1 = ft(xt, u
1
t , . . . , u

N
t ),∀t ∈ [T − 1]. (1b)

Nash equilibrium strategies u∗ := (u1∗, . . . ,uN∗) satisfy
the inequality J1(u1,u2∗, . . . ,uN∗;x1) ≥ J1(u∗;x1) for the
first player (P1) and likewise for all other players. Intuitively,
at equilibrium no player wishes to unilaterally deviate from
their respective strategy ui∗. Note that this solution concept
differs from a formulation as joint optimal control problem. In

1This setup readily extends to the constrained case as in [13, 14]—as our
own work does. We ignore such constraints here for clarity.

particular, players’ objectives may conflict in which case the
resulting equilibrium is noncooperative.

III. PROBLEM FORMULATION

A Nash game requires finding optimal strategies for each
player, given their objectives. In contrast, this work is con-
cerned with the inverse problem which requires finding play-
ers’ objectives for which the observed behavior is a Nash
equilibrium. In short, it seeks an answer to the question: Which
player objectives explain the observed interaction?

We cast this question as an estimation problem. To
that end, we assume that each player’s cost function is
parameterized by a vector θi ∈ Rki , i.e., J i(·; θi) ≡∑T
t=1 g

i
t(xt, u

1
t , . . . , u

N
t ; θi).

Thus equipped, we seek to estimate those parameter values
that maximize the likelihood of a given sequence of partial
state observations y := (y1, . . . , yT ) for the induced paramet-
ric family of games Γ(θ) =

(
x1, f, {J (i)( · ; θ(i))}i∈[N ]

)
:

max
θ,x,u

p(y | x,u) (2a)

s.t. (x,u) is an OLNE of Γ(θ) (2b)
(x,u) is dynamically feasible under f, (2c)

where, θ is the vector of aggregated parameters over all
players, i.e., θ := (θ1, . . . , θN ), and p(y | x,u) denotes a
known observation likelihood model.

In summary, the above formulation of the inverse dynamic
game problem attempts a joint estimation of states, control
inputs, and player objectives by tightly coupling them through
Nash equilibrium constraints. Note that this is an important
difference to existing formulations [3, 18] which treat these
estimation problems separately and do not exploit the strong
Nash priors which couple them. We discuss these methods in
further detail below and compare to them as a baseline.

IV. OUR APPROACH

This section describes our main contribution: a novel solu-
tion technique for identifying objective parameters of players
in a continuous game. Our formulation is directly expressed
in the standard format of a constrained optimization problem.
That is, our method yields a mathematical program which
can be encoded using well-established modeling languages
(e.g., CasADi [2], JuMP [9], and YALMIP [15]) and solved
by a number of off-the-shelf methods (e.g., IPOPT [19],
KNITRO [6], and SNOPT [12]).

A. Encoding Nash Equilibrium Constraints

A key challenge to solving the estimation problem in (2)
is posed by the requirement to encode the equilibrium con-
straint in (2b) in order to couple the estimates of game
trajectory (x,u) and objective parameters θ . In this work,
akin to the bilevel optimization approach to single-player
inverse optimal control (IOC) of Albrecht et al. [1], we
encode this forward optimality constraint via the corre-
sponding first-order necessary conditions. For an open-loop



Nash equilibrium (OLNE), the first-order necessary condi-
tions are given by the union of the individual players’
Karush–Kuhn–Tucker (KKT) conditions, i.e.,

G(x,u,λ) :=

 ∇xJ
i + λi>∇xF(x,u)

∇uiJ i + λi>∇uiF(x,u)

}
∀i ∈ [N ]

F(x,u)

 = 0.

(3)

The first two blocks of this equation are repeated for all
players Pi and F(x,u) collects the dynamics constraint error
from (1a) with tth block of xt+1 − ft(xt, u1t , . . . , uNt ). Here,
we introduce costates λi := (λi1, . . . , λ

i
T−1) for all players,

where λit ∈ Rn is the Lagrange multiplier associated with the
constraint between decision variables at time step t and t+ 1
in (1a).

Incorporating (3) as constraints, we cast the inverse dynamic
game problem of (2) as

max
θ,x,u,λ

p(y | x,u) (4a)

s.t. G(x,u,λ; θ) = 0. (4b)

Here, the costates λ of (3) appear as additional primal
decision variables. Further, G(x,u,λ; θ) is the KKT residual
from (3), with added explicit dependency on the cost parame-
ters θ .

Note that (4b) does not explicitly depend upon observa-
tions y but instead utilizes the trajectory (x,u) which we
optimize simultaneously to maximize observation likelihood.
Thus, our method does not rely on complete observation of
states, or even inputs. Rather, we reconstruct this missing in-
formation by exploiting knowledge of dynamics and objective
model structure.

Finally, we also note that our method applies coherently
when there are multiple observed trajectories; our development
here treats the single-trajectory observation case for clarity.

B. Structure of Constraints

Consider the tth term in the first block of G in (3)

0 = ∇xt
J i(x,u; θi) + λi>∇xt

F(x,u) (5a)

= ∇xt
git(xt, ut; θ

i) + λit−1 − λi>t ∇xt
ft(xt, ut), (5b)

with aggregated player inputs ut = (u1t , . . . , u
N
t ). In the

inverse game, objective parameters θ necessarily appear as
decision variables. Since our method additionally estimates
the game trajectory (x,u) to account for noise-corrupted
partial state observations, the equilibrium constraints in (4b)
remain at least bilinear even for linear-quadratic games and the
optimization problem is inevitably nonconvex. Therefore, our
approach inherently relies on an iterative method to identify
solutions of (4) and the ability to solve this problem can
depend on suitable initialization of the decision variables.

To this end, we leverage the observation sequence y to
initialize the decision variables x and u by solving a relaxed
version of (4) without equilibrium constraints. That is, we

compute the initialization of the state-input trajectory as the
solution of

x̃, ũ := arg max
x,u

p(y | x,u) (6a)

s.t. F(x,u) = 0. (6b)

This pre-solve step can be interpreted as sequentially activating
the different components of the KKT constraints in (4b).

V. EXPERIMENTS

This section analyzes the performance of the proposed
inverse game solution approach and compares it to a state-
of-the-art baseline in a Monte Carlo study.

A. Baseline: Minimizing KKT Residuals

We use as a baseline the KKT residual approach presented
in Rothfuß et al. [18]. Like our method, the KKT residual
approach uses the first-order necessary conditions in (3) to
encode forward optimality. However, it does not jointly op-
timize a trajectory estimate for the problem. Instead, these
method assume access to a preset trajectory along which they
minimize the violation of the optimality constraint, i.e.,

min
θ,λ
‖G(x̃, ũ,λ; θ)‖22 , (7)

where x̃ and ũ are assumed to be given as part of the
observation. Thus, only the objective parameters θ and the
costates λ are decision variables in the problem.

In scenarios with incomplete information due to unobserved
inputs, noise, or partial state observations, the solution to the
optimization problem in (7) is not always well-defined. To this
end, we extend the technique of [3, 18] with a pre-processing
step that recovers a dynamically feasible state-input sequence
by maximizing the likelihood of the observations via (6).

B. Implementation

We implement our proposed approach as well as the KKT
residual baseline [18] in Julia [5] using the algebraic modeling
language JuMP [9]. The source code is publicly available at
https://github.com/PRBonn/PartiallyObservedInverseGames.jl.

C. Results

To compare robustness and performance of our method with
the baseline, we study a simulated highway driving scenario
as shown in Figure 1. More extensive results are presented
in the full version of our paper [17]. In this scenario, each
player wishes to make forward progress in a preferred lane at a
specific travel speed, without colliding. At the same time, they
wish to do so without turning or accelerating significantly. We
model each vehicle’s dynamics using a standard nonlinear 4D
unicycle model whose state includes planar position, speed,
and heading. To express players’ costs, we use a weighted
sum of basis functions that encode their aforementioned pref-
erences following [10]. In this cost structure, the unknown
parameters θ are the weights of each basis function. However,
linear parameterization is not a strict requirement and our
method applies more generally, e.g., to time-varying cost
structures [7] and parametrizations via neural networks.

https://github.com/PRBonn/PartiallyObservedInverseGames.jl


We generate ground-truth behavior by fixing parameters of
a cost model for each player and finding the corresponding
OLNE trajectory as the root of (3) using the well-known
iterated best response (IBR) algorithm [20]. Observations are
obtained by corrupting this solution with different levels of
isotropic additive white Gaussian noise. For each simulated
observation sequence, we run both our method and the baseline
to recover estimates of the cost parameters θ . We replicate this
Monte Carlo study for two different observation models: in
one, estimators observe the full state, and in another, estimators
observe the position and heading but not the speed of each
agent; i.e., they receive a partial state observation.

To measure estimation performance in parameters space, we
use a cosine similarity measure:

Dcos(θtrue, θest) = 1− 1

N

∑
i∈[N ]

θi>trueθ
i
est∥∥θitrue

∥∥
2

∥∥θiest

∥∥
2

. (8)

In order to give a more tangible sense of algorithmic quality,
we also report raw position prediction errors, computed by
finding a root of (3) using the estimated objective parameters.

Figure 2 shows the performance of our method and the
baseline for this highway driving problem. We measure pa-
rameter estimation error using (8), with results in Figure 2(a).
Figure 2(b) shows the corresponding position prediction errors.
In both cases, our method outperforms the baseline. Further-
more, note that the baseline performance is not consistent
across the two metrics. That is, while the performance of the
baseline measured in parameter space is not much effected by
partial state observations, the observation model has a decisive
impact on the trajectory prediction accuracy. This performance
inconsistency of the baseline can be attributed the fact that
certain objective parameters are more critical for accurate
prediction of the trajectory than others. Since our method’s
objective is data-fidelity, here measured by observation likeli-
hood (2a), it directly accounts for these effects. The baseline,
however, greedily optimizes the KKT residual irrespective of
the downstream trajectory prediction task.

VI. CONCLUSION & FUTURE WORK

We have proposed a novel method for estimating player
objectives from noise-corrupted partial state observations of
non-cooperative multi-agent interactions—a task referred to
as the inverse dynamic game problem. The proposed solution
technique estimates the trajectory to recover unobserved states
and inputs, and optimizes this trajectory simultaneously with
an objective model estimate in order to maximize data-fidelity.
The estimated trajectory is a forward game solution of the
observed game including each players’ strategy, and may be
used for trajectory prediction. Numerical simulations show that
the resulting algorithm is more robust to observation noise
and partial state observability than existing methods [3, 18],
that require estimating states and inputs a priori. Our method
recovers model parameters that closely match the unobserved
true objectives and accurately predicts the state trajectory; even
for high levels of observation noise.
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Fig. 2. Estimation performance of our method and the baseline for
the 5-player highway overtaking example, with noisy full and partial state
observations. (a) Error measured directly in parameter space using (8). (b)
Error measured in position space. Triangular data markers in (b) highlight
objective estimates which lead to ill-conditioned games. Solid lines and
ribbons indicate the median and IQR of the error for each case.

Despite these encouraging results, there is ample room for
future improvement. In the present work, we study the utility
of our method for offline scenarios in which an external ob-
server recovers the objectives of players post hoc. Our method,
however, yields not only the estimated objective model, but
also the forward game solution, including each players’ strat-
egy. This property makes our technique particularly suitable
for online filtering applications in which an autonomous agent
must estimate the objectives of other players for safe and
efficient closed-loop interaction. Here, the proposed estimator
could be used on a buffer of past observations to simultane-
ously estimate each opponent’s objective while generating the
optimal response for the ego-agent over a receding prediction
horizon. Finally, aspects of active learning and modeling of
reputation effects on the dynamics of opponent behavior are
exciting avenues for future work.
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and Sören Hohmann. Inverse optimal control for iden-
tification in non-cooperative differential games. IFAC-
PapersOnLine, 50(1):14909–14915, 2017.
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