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Abstract—Ensuring safety for human-interactive robotics is

important due to the potential for human injury. The key

challenge is defining safety in a way that accounts for the complex

range of human behaviors. We propose an approach for ensuring

safety based on backup actions we believe the human always

considers taking to avoid an accident—e.g., braking to avoid rear-

ending the robot. Given a set of backup actions, our approach

guarantees safety as long as the human takes the appropriate

backup actions when necessary to ensure safety. We evaluate our

approach on real humans interacting with a simulated robot.
1

I. INTRODUCTION

Robots are increasingly operating in environments where
they must interact with humans, such as collaborative grasp-
ing [1, 2] and autonomous driving [3, 4, 5, 6]. Ensuring safety
for such robots is paramount due to the potential to inflict harm
on humans [7]. These challenges are particularly salient in
settings such as autonomous driving, where robots and humans
may have disjoint or conflicting goals—e.g., a self-driving car
making an unprotected left turn [5].

The key challenge is how to define safety for human-
interactive robots. Modeling the human as an adversary is one
approach, but is typically prohibitively conservative. Another
approach is to learn a model to predict human actions [8, 9,
10], and ensure safety with respect to this model. However,
different humans may exhibit very different behaviors—e.g.,
people in different regions may drive differently. If a human
behavior is not exhibited in the data used to train the model,
then the model may not account for it. Another alternative,
called responsibility sensitive safety (RSS) [11], is to manu-
ally specify the range of acceptable robot actions in various
scenarios. In this approach, the designer of the robot controller
is responsible for ensuring that acceptable actions only include
safe actions. However, manually defining acceptable robot
actions for all possible scenarios is challenging, especially for
robots operating in open-world environments.

We propose a novel approach for ensuring safety in human-
interactive robotics systems based on the following key ideas:

• Bounding human behavior via backup actions: The
controller designer specifies backup actions that they
believe the human always considers taking to avoid an
accident (e.g., braking while steering in some direction).
We assume the human may take any action in general,
take these actions when necessary to ensure safety.

• Ensuring safety: We use abstract interpretation [12] to
overapproximate the reachable set of the system for the
above model of human behavior, and then ensure safety
with respect to this overapproximation.

1Appendix and video are available at: https://osf.io/atbp4/?view only=
865b3796b5454594996bc5173ce75504.

Fig. 1. Trajectories showing a robot (red) and a human (blue) interacting at
an intersection (for 25 timesteps). Left: The robot passes before the human,
leveraging the fact that a responsible human would slightly brake to allow the
robot to cross safely. Right: Human arrives at the intersection first; the robot
triggers the shield to brake and allow the human to cross first.

First, our notion of backup actions captures the idea that we
reasonably believe the human will take a limited range of
evasive maneuvers to avoid an accident—e.g., if the robot
gradually slows to a stop, then we may expect the human
to slow down to avoid rear-ending it. If the robot is on a
highway, coming to a stop is more dangerous; in this case,
we might conservatively restrict to the case where the robot
pulls over to the shoulder before coming to a stop. Specifying
backup actions provides a way to define safety; we refer to
such a safety constraint as safety modulo fault. In particular,
to instantiate our framework, the controller designer provides:

• Robot backup action: An action that the human antici-
pates the robot may take to ensure safety (e.g., to brake
without changing directions), chosen based on intuitions
based on traffic rules and common sense.

• Human backup action set: A set of actions that includes
at least one action the human considers taking to ensure
safety (e.g., braking while steering in some direction),
chosen based on intuitions about human behavior.

Next, we propose an algorithm for ensuring safety modulo
fault. We build on model predictive shielding [13, 14], which
takes an arbitrary controller designed to reach the goal, but
then overrides it if needed to ensure safety. In particular, our al-
gorithm, called MPS modulo fault, uses on-the-fly verification
based on abstract interpretation to determine whether the goal-
reaching controller is safe; if so, it uses the given controller,
but otherwise, it switches to a safe backup controller. Figure 1
shows how our algorithm ensures safety while interacting with
a human driver without being overly cautious.

We empirically evaluate our approach on a real human in-
teracting with a simulated robot via keyboard. We demonstrate
that our algorithm enables the robot to avoid accidents, even
when combined with a naı̈ve controller that ignores the human.

https://osf.io/atbp4/?view_only=865b3796b5454594996bc5173ce75504
https://osf.io/atbp4/?view_only=865b3796b5454594996bc5173ce75504


II. PRELIMINARIES

a) Human-robot system: We consider a robot R and
a human H . As in prior work [5], we assume they act in
alternation, which is reasonable if the time steps are small.
For a state xt where R is acting, we have

x
0
t
= fR(xt, uR,t) and xt+1 = fH(x0

t
, uH,t),

where X ✓ RnX is the state space, UA ✓ RnU,A are the
actions for A 2 {R,H}, and fA : X ⇥ UA ! X are the
dynamics for A. Given initial state x0 2 X0 ✓ X where
R is acting, and actions ~uA = (uA,0, uA,1, ...) 2 U1

A
for

each A 2 {R,H}, we define the trajectory ⇣R(x0, ~uR, ~uH) =
(x0, x

0
0, x1, ...) 2 X1, where x

0
t
= fR(xt, uR,t) and xt+1 =

fH(x0
t
, uH,t). Similarly, given initial state x

0
0 2 X where H

is acting, we define ⇣H(x0
0, ~uH , ~uR) = (x0

0, x0, x
0
1, ...), where

xt = fH(x0
t
, uH,t) and x

0
t+1 = fR(xt, uR,t). We can replace

each ~uA by a policy ⇡A : X ! UA. Our goal is to ensure the
system stays in a given safe region Xsafe ✓ X .

Definition II.1. A trajectory ⇣ = (x0, x
0
0, x1, ...) (or ⇣ =

(x0
0, x0, x

0
1, ...)) is safe if xt, x

0
t
2 Xsafe for all t 2 N.

III. SAFETY MODULO FAULT

Here, we formalize our assumptions and safety notion.
a) Human objective: We assume the human acts accord-

ing to a maximin objective, where the “min” is the worst-case
over actions the human anticipates the robot may take, and the
“max” is over the human’s own actions. That is, the human
plans optimally while conservatively accounting for actions
they anticipate the robot might take. In particular, at state x

0,
the human takes an action ⇡H(x0) = u

⇤
H,0 such that

~u
⇤
H
2 argmax

~uH2U1
H

JH(x0
, ~uH), (1)

where the argmax denotes the set of all optimal values, and

JH(~uH) = min
~uR2Û1

R

JH(⇣H(x0
, ~uH , ~uR))

JH((x0
0, x0, x1, ...)) =

1X

t=0

�
t
rH(x0

t
, uH,t, xt),

where ÛR ✓ RnU,R is the set of actions the human anticipates
the robot may take, rH : X ⇥ UH ⇥ X ! R [ {�1} is the
human reward function, and � 2 (0, 1) is a discount factor.

The key challenge for the robot to plan safely is that it does
not know the human reward function rH , the human action set
UH or the human-anticipated robot action set ÛR. Assuming
we know these values exactly is implausible. Instead, we
assume access to minimal knowledge about each of these
objects, which we formalize in the next section.

b) Assumption on human objective: First, we assume that
the human reward for reaching an unsafe state is �1.

Assumption III.1. For any x
0
, x 2 X and uH 2 UH , we have

rH(x0
, uH , x) = �1 if x0 62 Xsafe or x 62 Xsafe.

That is, the human driver always acts to avoid an accident.
Other than Assumption III.1, rH can be arbitrary.

With this assumption, there are two reasons accidents may
happen: (i) there was a safe action sequence ~uH 2 U1

H
that

the human driver failed to take, or (ii) if the robot takes an
action uR 62 ÛR that the human driver failed to anticipate.
Thus, we can always conservatively take ÛR to be smaller
than it actually is. Conversely, we can always take U0

H
to be

larger than it actually is. Thus, we make minimal assumptions
about what actions are contained in ÛR and UH .

First, we make the following assumption on the set of
actions ~UR that the human anticipates the robot may take:

Assumption III.2. We are given a robot backup action u
0
R
2

UR that is anticipated by the human—i.e., u0
R
2 ÛR.

That is, the human always accounts for the possibility that
the robot might take action u

0
R

. For example, we might assume
that u0

R
is gradually braking and coming to a stop.

Next, we make the following assumption about the human:

Assumption III.3. We are given a human backup action set
U0
H
✓ UH such that if max~uH2U1

H
JH(~uH) = �1, then the

human takes an action ⇡H(x0) 2 U0
H

.

That is, if the human is unable to guarantee safety (i.e., their
objective value is �1), then they take some action in U0

H
. For

example, U0
H

may contain all actions where the human driver
decelerates by at least some rate; this choice allows them to
slow down more quickly or steer in any direction.

c) Problem formulation: Our goal is to ensure that the
robot acts in a way that ensures safety for an infinite horizon
for any human that satisfies our assumptions.

Definition III.4. A robot policy ⇡R : X ! UR is safe modulo
fault for initial states X0 ✓ X if for any human policy ⇡H

satisfying Assumptions III.1, III.2, & III.3, and any x0 2 X0,
the trajectory ⇣R(x0,⇡R,⇡H) 2 X1 is safe.

That is, ⇡R that ensures safety as long as the human acts
in a way that satisfies our assumptions. Our goal is to design
a policy ⇡R that is safe modulo fault.

Finally, we cannot guarantee safety starting from an arbi-
trary state x0. For instance, if the robot is about to crash into
a wall, no action can ensure safety. We assume that the initial
states X0 are ones where we can guarantee safety.

Definition III.5. A safe equilibrium state x 2 X satisfies (i)
x 2 Xsafe, and (ii) x = f(x, u0

R
, uH) for all uH 2 U0

H
.

We denote the set of safe equilibrium states by Xeq. At a
state x 2 Xeq, the robot and human can together ensure safety
for an infinite horizon by taking actions u

0
R

and uH for any
uH 2 U0

H
. In our driving example, Xeq contains states where

both agents are at rest (i.e., their velocity is zero).

Assumption III.6. We have X0 ✓ Xeq.

In other words, the system starts at a safe equilibrium state
where we can ensure safety for an infinite horizon.



Algorithm 1 Model predictive shielding modulo fault.
procedure ⇡R(x)

x
0  fR(x, ⇡̂R(x))

return if ISREC(x0) then ⇡̂R(x) else u
0
R

end if

end procedure

procedure ISREC(x0)
X

0
0  {x0}

for t 2 {0, ..., k � 1} do

if X
0
t
6✓ Xsafe then return false end if

UR,t  if t = 0 then {uR} else {u0
R
} end if

UH,t  U0
H

X
0
t+1  F (Xt, UR,t, UH,t)

end for

return if Xk ✓ Xeq then true else false end if

end procedure

IV. MODEL PREDICTIVE SHIELDING MODULO FAULT

We describe our algorithm for constructing a robot con-
troller ⇡R : X ! UR that is safe modulo fault. Our approach
is based on model predictive shielding (MPS) [13, 14], which
converts an arbitrary controller ⇡̂R : X ! UR into a controller
⇡R that uses ⇡̂R but overrides it when it cannot ensure it is
safe. The challenge is checking whether it is safe to use ⇡̂R.
The idea is to maintain the invariant that the current state is
recoverable—i.e., that there is some sequence of actions each
agent can take that safely brings the system to a stop.

Definition IV.1. Given k 2 N, a state x
0 2 X is recoverable

(denoted x
0 2 Xrec) if for ~uR = (u0

R
, u

0
R
, ...) 2 U1

R
and any

~uH 2 (U0
H
)1, ⇣H(x0

, ~uH , ~uR) = (x0
0, x0, x

0
1, ...) satisfies (i)

x
0
t
, xt 2 Xsafe for all t 2 {0, ..., k}, and (ii) xk 2 Xeq.

Now, our MPS modulo fault algorithm for computing
⇡R is shown in Algorithm 1. Here, ISREC checks whether
x
0 = fR(x, ⇡̂R(x)) is recoverable. If so, ⇡R returns ⇡̂R(x);

otherwise, it returns u
0
R

. To check recoverability, ISREC
overapproximates the reachable set of states after t steps as a
set Xt ✓ X . It assumes given a dynamics overapproximation
F : 2X⇥2UR⇥2UH ! 2X mapping sets of states X ✓ X , sets
of robot actions UR ✓ UR, and sets human action UH ✓ UH

to sets of states F (X,UR, UH) ✓ 2X , that satisfies

f(x, uR, uH) 2 F (X,UR, UH) (2)

for all x 2 X , uR 2 UR, and uH 2 UH . Then, ISREC checks
whether (i) safety holds for every state xt 2 Xt (i.e., Xt ✓
Xsafe), and (ii) every state xk 2 Xk is a safe equilibrium state
(i.e., Xk ✓ Xeq). If both hold, then x is recoverable. We have
the following (see Appendix A for a proof):

Theorem IV.2. Assuming (2) holds, then our policy ⇡R is safe
modulo fault (i.e., it satisfies Definition III.4).

V. EVALUATION

We have implemented our approach in a simulation for three
robotics tasks. We consider an aggressive robot controller with
and without the shield as well as a cross entropy method

(a) merge (b) cross

(c) turn (d) two lanes (e) turn (no stop)
Fig. 2. Visualizations of the different tasks along with the initial positions
and the goals for the robot and the human. The red box is the robot and the
blue box is the human.

controller (CEM) designed to avoid humans. Also, we consider
real humans interacting with the simulation via keyboard.

We focus on understanding whether our approach can ensure
safety in aggressive driving scenarios; our approach can easily
be tailored to drive more conservatively, which would further
improve safety (but may reduce performance). We focus on
settings where the human and the robot must compete to reach
their goals. We tune the parameters of our MPS modulo fault
algorithm (i.e., the robot backup action u

0
R

and the human
backup action set U0

H
) to be as aggressive as possible while

still ensuring safety on the simulated humans. Furthermore,
for our experiments with real-world humans, we strongly
encourage them to try and reach their goal before the robot,
albeit keeping safety as the top priority. Then, our results are
designed to answer the following questions:

• Can MPS modulo fault can be used to ensure safety?
• Can MPS modulo fault outperform a handcrafted MPC

based on CEM in terms of performance?

A. Experimental Setup
a) Robotics tasks: We consider three non-cooperative

tasks (see Figure 2): (i) “merge”: there are two lanes that
merge—i.e., the robot is coming in from one lane and the
humans from another; both their goals are to navigate the
merge and reach their goal, (ii) “cross”: both agents are
moving towards an intersection from different directions—i.e.,
the robot is moving horizontally and the human is moving
vertically; both their goals are to get to the other side of
the intersection, (iii) “turn”: an unprotected left turn—i.e., the
human is driving without turning and the robot needs to make
a left turn that crosses the human path.

b) Safety property: We assume the robot and human are
each a rectangle; then, the safety property is that the the robot
and human rectangles should not intersect.



Fig. 3. Results with real humans, for the aggressive controller (red), the
CEM MPC (blue), and our shielded aggressive policy (green). Left: Fraction
of unsafe runs. Right: Time the robot takes to reach its goal in seconds.

c) Robot dynamics: The robot dynamics are the ones in
our running example—i.e., its state is (x, y, v, ✓), where (x, y)
is position, v is velocity, and ✓ is orientation, and its actions
are (a,�), where a is acceleration and � is steering angle.

d) Humans: We consider real human users interacting
with the simulation via keyboard. They control the human
using the up/down arrows to control acceleration and the
left/right arrows to control steering angle. We asked the human
users to prioritize safety first, but to drive aggressively to try
and reach their goal before the robot. We also considered sim-
ulated humans, including multiple humans; see Appendix B.

e) Controllers: We consider three controllers for the
robot: (i) an aggressive controller, (ii) a handcrafted MPC
based on the cross-entropy method (CEM) designed to ensure
safety without a shield, and (iii) our MPS modulo fault
algorithm used in conjunction with the aggressive controller.
We give details in Appendix B.

B. Experimental Results
We describe our experimental results, based on 18 users.

a) MPS modulo fault ensures safety for real humans:
Next, we had real human users interact with our simulated
robot via keyboard input. we show both the fraction of unsafe
runs (left), and the time taken by the robot to reach the goal
(right), including the aggressive controller (red), the MPC
based on CEM (blue), and our shielded aggressive controller
(green). As can be seen, for the aggressive controller, the
robot gets to its goal the fastest, but is frequently unsafe. The
MPC based on CEM is significantly safer; in this case, it is
somewhat safer than our shielded aggressive controller. On the
other hand, our shield controller reaches its goal significantly
faster than the MPC, while being almost as safe as the
MPC CEM. As described above, we set the shield parameters
aggressively based on the simulated humans to ensure it could
reach its goal; in practice, we could further improve safety by
setting these parameters more conservatively and by tuning
them to the real human driver data.

b) Alternative robot backup actions: A key feature of
our approach is that we can flexibly design the robot backup
action to ensure safety. To demonstrate this flexibility, we
design an alternative backup action that pulls the robot over
to the shoulder of a highway. Note that this backup policy is
time varying—i.e., the robot steering depends on the current
state. We test this backup policy with simulated humans on
the task in Figure 2 (d), where there are two lanes on the

Fig. 4. Results for alternative robot backup actions with simulated humans.
For the “pull over” backup action, we show the fraction of unsafe runs
(leftmost) and the time the robot takes to reach its goal in seconds (second
from the left), for the aggressive controller (red), the CEM MPC (blue), and
our shielded aggressive controller (green). For the “no-stop zone” backup
action, we show the number of stops in the intersection (second from the
right) and the time the robot takes to reach its goal in seconds (rightmost),
for the original (green, “shield”) and the new (brown, “shield++”) shielded
controllers; both controllers are always safe.

highway and an on-ramp that merges onto the highway. The
human is on the on-ramp and the robot is on the highway. To
avoid collisions, the robot can pull over to the right-most lane.
Figure 4 shows the fraction of the unsafe runs (leftmost), and
the time the robot takes to reach its goal (second from left)
for all three controllers—aggressive (red), the MPC based on
CEM (blue), and our shielded aggressive controller with the
pull over backup policy (green). Our shielded controller is
always safe and is significantly faster than the MPC.

We also design a robot backup action that avoids stopping
in the middle of an intersection and blocking it, which is often
illegal. To this end, we modify the turn task to include a no-
stop zone (shown in Figure 2 (e)) where the robot is prohibited
from stopping. In this zone, the robot backup action does not
come to a stop immediately; instead, it drives through the zone
until it crosses the intersection, and only brakes once it has
fully cleared the intersection. The results for this experiment
using simulated humans are shown in Figure 4 (right). We
compare the original shielded controller (“shield”) that may
stop in the intersection with the new one that adheres to the
no-stop zone in Figure 2 (e) (“shield++”). In this case, both the
controllers were always safe; instead, we show the fraction of
runs where the robot stops in the intersection (second from the
right), and the time the robot takes to reach its goal (rightmost).
The new shielded controller takes slightly longer to reach the
goal, but never stops in the intersection.

VI. CONCLUSION

We have proposed an approach for ensuring safety in
human-interactive robotics systems. We define a notion of
safety that models human behavior by specifying their backup
behaviors, and propose our MPS modulo fault algorithm for
ensuring our safety with respect to this model. Finally, we
validate our approach on both real and simulated humans.
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