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Abstract—Most current approaches to social navigation focus
on the trajectory and position of participants in the interaction.
Our current work on the topic focuses on integrating gaze
into social navigation, both to cue nearby pedestrians as to the
intended trajectory of the robot and to enable the robot to read
the intentions of nearby pedestrians. This paper documents a
series of experiments in our laboratory investigating the role of
gaze in social navigation.

I. INTRODUCTION

As mobile robots move into human-populated environments,
such as homes, offices, and businesses, they must be able to
negotiate the problem of navigating in spaces that they share
with people. This development has given rise to research on
the problem of social navigation [3} [L5]. Among other goals,
researchers in this area wish to improve the comfort and safety
of people who must share space with robots, to make robots
more interpretable to people as they navigate, and to enable
robots to make progress on tasking where they may otherwise
be impeded by nearby pedestrians blocking their path [2} 25]].
It is also worth noting that the study of social navigation
has not been limited to the domain of robotics. Significant
research has been performed in virtual reality simulations
or 3D-rendered game models [[17, 24]], and the Social Force
Model — which has been leveraged in robotics — has its
origins in multi-agent crowd simulations [9} 22].

A significant majority of the work on the task of social
navigation in robots has focused on the position and trajectory
of people with respect to the robot [4} [10, 20, 23]]. A smaller
collection of work has focused on cuing nearby pedestrians
as to the intentions of the robot. Methods have included the
addition of turn signals to the robot, as well as projection map-
ping arrows onto the floor in front of the robot; both indicating
the robot’s intended trajectory [, |6, [14} [19]. Research in our
group has instead focused on leveraging gaze as a social cue,
both to indicate the intended trajectory of the robot [8] and to
interpret the intentions of nearby people [[L1]. This short paper
discusses the evolution of our thinking on this problem based
on the outcomes of several experiments in an ongoing series of
studies that we are performing and concludes with a discussion
of challenges we have identified. For a comprehensive review
of approaches for handling interactions in the context of social
navigation, we refer the reader to Mirsky et al. [16].

The first work in this series of experiments is by Fernandez
et al. [6] who attached LEDs to the frame of a BWIBot robot
[13], and used the LEDs in a fashion similar to a turn signal.
In a test in which people pass robots heading head-on towards
them in a hallway, LEDs were only successful in preventing a
human and a robot from blocking each other’s paths when the

person has previously seen the turn signal being used by the
robot (thus revealing the signal’s meaning). This result caused
us to look to the use of gaze as a social cue to coordinate
hallway-passing behavior, with the hypothesis that gaze will
be easily interpreted correctly by people.

Gaze is an important indicator of where a person is about
to move. Norman [18]] speculated that bicycle riders avoid
collisions with pedestrians by reading their gaze. Nummenmaa
et al. [19] present a study in which a virtual agent (3D-
rendered on a computer monitor) walks towards the study
participant. The participant must choose whether to pass the
agent on its left or right using keyboard commands, and the
virtual agent indicates its intention by looking to its left or
right. Unhelkar et al. [27] present a study in which head
pose is used to determine which target a pedestrian will walk
toward. Khambhaitia et al. [12] present a motion planner which
coordinates the head motion of a robot to the path that the
robot will take 4 seconds in the future, and asked participants
in a video survey to determine the robot’s intended path as it
approaches a T-intersection.

In our lab we have investigated the use of gaze in social
navigation. Hart et al. [§] present a human study in which
researchers acting as pedestrians in a busy hallway vary their
gaze patterns to be either congruent with the direction that
they intend to walk, counter to that direction, or absent (by
looking down at a cell phone). The results demonstrate that
pedestrians passing these researchers in a hallway are more
likely to collide with them when their gaze is counter to the
direction that they intend to walk in. In the same paper, Hart
et al. [8] update the experimental setup from Fernandez et
al. [6] to compare a gaze cue presented on a 3D-rendered
virtual agent head mounted to the robot’s chassis to the use
of LEDs; finding that the gaze cue is more effective than the
LEDs in preventing the robot and participants in the study
from blocking each other’s paths.

The first two of these robot studies surrounds the idea of the
robot socially cuing its intentions to nearby pedestrians, but
does not explore the idea of the robot’s behavior responding
to social cues made by the people it interacts with [7, 26].
The most recent study on this topic by our group, performed
by Holman et al. [[11], approaches this problem from the
perspective of enabling the robot to respond to human gaze.
Participants are placed in a virtual environment, using wireless
virtual reality equipment with an embedded eye tracker, and
instructed to walk to one of five targets, in a similar fashion
to the experimental design described in the work by Unhelkar
et al. [27]]. The study’s findings indicate that gaze can be used
as an early cue indicating the target of a participant’s motion.



Fig. 1: The hallway on the left is the one used in the human-
robot interaction studies by Fernandez et al. [6] and Hart et
al. [8]]. The one on the right is the one used in the human field
study by Hart et al. [8]].

We plan to leverage these results in future work to enable a
robot to coordinate its motion to that of nearby pedestrians.

II. GAZE, NAVIGATION, AND HALLWAY PASSING

In this section we provide further details on our experiments
on gaze and social navigation.

A. LEDs and Passive Demonstrations

Fernandez et al [6] present a study in which a robot
navigates a hallway (Figure [I] (left)) and signals the side
that it intends to pass a human participant using a strip of
LEDs which act as a turn signal. The robot’s navigation
algorithm treats the hallway as being divided into three traffic
lanes through which it may navigate. Both the robot and the
pedestrian start on the middle lane at opposite ends of a
hallway. The robot signals that it is about to change its lane by
blinking the LED light strip on the side of its chassis matching
that of the direction of the lane that it intends to shift into.
The LEDs are configured similarly to Figure|2| (left), which is
adapted from [8]. It should be noted that there is an important
difference between the appearance of the robot with LEDs in
[6]] and [8]]. In Ferndandez et al. [6], the robot has a monitor
attached to its top in the LED condition, but with no face
rendered on it, and mounted facing the back of the robot.
This is a design choice on the BWIBot used to launch the
robot’s software. In the Hart et al. [8] study, the monitor is
removed because it was noted by the researchers that study
participants would sometimes pause to observe the contents
of the monitor, which is only the output of the ROS nodes
driving the robot, and not intended as part of the interaction.

The robot’s navigation algorithm models passing a person
in a hallway as a problem over three traffic lanes at three
distances, as in Figure [3] If the person and the robot are
both in the middle lane, then the robot has the option of

Fig. 2: The two conditions in our human-robot hallway exper-
iment: the LED signal (left) and the gaze signal (right).
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Fig. 3: A diagram of the hallway, its lanes, and the distance
thresholds at which the robot signals its intention to change
lanes (dconfiict), €xecutes a lane change (degecute), and is
determined to potentially be in conflict with a person in its
path (dsignai). The position of the robot is marked p, and the
position of the person is marked py,.

passing the person on the left or the right, by shifting into the
corresponding lane. The distances in this model are: dsignais
the distance at which the robot will begin to signal its intention
to the pedestrian; deyecute, the distance at which the robot will
begin to shift into the left or right lane; and dor, f1ic¢, at which
the robot stops its motion and does not attempt to pass. If the
robot and the person are in opposite lanes when they pass each
other, the robot will not stop during the interaction.

In addition to these parameters, Fernandez et al. [6] intro-
duced the concept of a “passive demonstration,” which is a
sort of training episode in which the study participant is not
informed that they are being trained, but wherein the robot
demonstrates the signal by simply using it in front of the
participant before it is relevant to their interaction. In this case,
the robot moves into the right lane, using the turn signal, at
the very start of crossing the hallway, then moves back to the
middle prior to passing the participant. Upon coming within
distance dg;gnar the Tobot again signals, now moving into the
left lane, when passing the participant.

The study follows an inter-participant design, in which each
participant traverses the hallway exactly once. The distances,
dsignals dezecutes AN deon f1ict are set to 7 meters, 2.75 meters,



and 1 meter, respectively, and the robot always moves into the
left lane when passing the pedestrian. These values are chosen
based on pilot study data, indicating that pedestrians are likely
pass on the right, and that degecure is at the last possible
distance change lanes. This set of distances is chosen to assure
that participants who successfully pass the robot do so based
on the signal, rather than the robot’s motion. The study is
set up as a 2X2 experiment where the controlled variables
are whether or not the LED is used, and whether or not the
robot performs a passive demonstration. The main measure is
whether a participant and the robot experience a “conflict,” in
which they come too close to each other. The results show that
the passive demonstration condition with the LED turn signal
significantly outperforms other conditions (no demonstration,
no LED: 100% conflict; no demonstration, LED: 90% conflict;
demonstration, no LED: 70% conflict; demonstration, LED:
20% conflict). A one-way ANOVA shows a significant main
effect (F'(3,36) = 9.913,p < 0.001)) and all pairwise post-
hoc tests based on Least Squares Difference (LSD) contrasting
against the “demonstration, LED” condition are significant at
p < 0.01.

B. Gaze in Purely Human Navigation Environments

The results from the previous experiment encouraged us to
search for a more naturalistic cue that people would be able to
pick up on without having to observe passive demonstrations.
Following previous work that looked at potential cues such
as body rotation, trajectory estimation, and gaze [21} 27], we
conducted a human study where we tested the viability of gaze
as an intentional cue in purely human navigation [8].

In this study, a researcher navigates the hallway depicted
in Figure |I| (right) and looks either in the direction in which
they intend to go (Congruent gaze), opposite to this direction
(Incongruent gaze), or at a mobile phone to deprive other
pedestrians from leveraging their gaze (No gaze). The primary
metric is whether the researcher comes into conflict with other
pedestrians, defined as bumping into them, brushing against
them, or quickly shifting to get out of each other’s way.

A total of 220 interactions were observed with 60 congruent
gaze interactions, 85 incongurent gaze interactions, and 75
no gaze interactions. The mean percentage of conflicts by
condition are: congruent gaze, 15%; incongruent gaze, 48%;
and no gaze 28%. A one-way ANOVA shows a significant
main effect (Fy 217 = 5.02,p = 0.007). Post-hoc tests of
pairwise mean differences using the Bonferroni criteria show
significant differences between congruent gaze and the other
two conditions (congruent vs. incongruent md = 0.221,p =
0.017; congruent vs. no gaze md = 0.191,p = 0.033).

These results highlight the importance of gaze as a natural-
istic cue that assists people to process the navigational goal of
other pedestrians around them, and adapt their own trajectory
accordingly. This outcome has motivated our subsequent stud-
ies on how gaze can be leveraged both to convey the robot’s
navigational goal and to infer the human navigational goal.

C. Conveying the Robot’s Navigational Intention

Returning to the hallway used in the passive demonstration
experiment [6], we hypothesized that the use of gaze-like cue
is more readily interpretable than the LED signal.

We designed a gaze cue using a 3D-rendered version of the
Maki 3D-printable robot headﬂ The virtual head is displayed
on a 21.5 inch monitor mounted to the front of the robot.
When signaling, the robot turns its head 16.5° and remains
in this pose, as shown in Figure [2] (right). The experimental
design repeats the experimental setup from Fernandez et
al. [6], contrasting the gaze signal against the LED signal,
but omitting the test of passive demonstrations. Because of
hardware changes, ds;gna; is reduced to 4m.

With 11 participants in the LED condition and 16 in the gaze
condition, participants in the gaze condition successfully infer
the robot’s goal 50% of the time, while none of the participants
in the LED condition infer the goal of the robot. Important to
note in the interpretation of the results from this experiment is
that we expect a conflict 100% of the time unless the robot’s
cue (either LED or gaze) are correctly interpreted. This is
because the robot moving into the left-hand lane, which is
against the convention in North America, is expected to result
in conflict 100% of the time. Comparing the performance of
the gaze signal against the LED signal demonstrates its ability
to impact people’s navigational choices, and that people more
easily interpret the gaze cue than the LED turn signal.

D. Inferring the Pedestrian’s Navigational Intention

The former set of experiments have demonstrated that a
robot using a gaze-based head-turn cue can signal its intention
to a person. The most recent experiment in our laboratory on
the topic of social navigation is an attempt to make inroads on
the inverse of that task -— having the robot react to a person’s
gaze in order to get out of the way -— by making predictions
of human walking motions based on gaze.

Holman et al [11] present a study, inspired by the ex-
periment in Unhelkar et al. [27], in which participants wear
a virtual reality headset with an embedded eye tracker and
walk through a simulated room towards a goal that they
are instructed to reach. For each trial, participants are first
instructed to walk along a straight path towards position “A”,
a target 1m directly in front of their starting position. Upon
reaching position “A,” participants proceed to one of five goals
placed 4m in front of the participant’s starting position, labeled
1-5, and placed 1m horizontally apart from each other. The
purpose of navigating to position “A” before Goals 1-5 is
to avoid conflating the effects of beginning to walk with the
measured effects of the study.

A total of 7 participants (6 male, 1 female) ranging in age
from 19-31 (mean 22.7) participated in this study. Study par-
ticipation was limited to researchers working in the laboratory,
as this study was conducted during the COVID-19 pandemic.

A multivariate Gaussian time series prediction algorithm
was trained on subsets of the data collected during the pedes-

Thttps://www.hello-robo.com/
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Fig. 4: Cross-validated accuracy of the multivariate Gaussian time series model over percent completion in time. Cross validation
is computed with respect to a single participant over a model trained over all other participants, then computed as the mean
when this procedure is repeated for all participants. The shaded region represents one standard deviation from the mean

cross-validated accuracy.

trian’s journey, and is used to predict the final goal of their
path. To extract meaningful results from the small amount
of data collected, the accuracy of this model is tested via
cross-validation. Results can be seen in Figure i The top
line in Figure [4] indicates the performance of gaze yaw plus
the position of the participant in indicating the participant’s
final navigational goal, showing that this model predicts their
motion goal earlier than all other tested cues. While this study
is limited, in the fact that it only predicts motion toward a
discrete goal, it represents an inroad towards reading gaze for
social navigation.

ITI. CONCLUSION

This paper presents some of our efforts towards the design
of a robot that can navigate in a social context while conveying
its intention using a gaze-based social cue and reading the gaze
of nearby pedestrians. We are currently in the process of de-
signing a system which moves these cues beyond the confines
of the hallway which we constructed for these experiments
and into the real world. Here, we list a few facets of social
navigation that we believe also bear further study.

1) Up-Close Deconflicting Interactions: While most hu-
man interactions when navigating in a crowd are seam-
less, there are still cases where there is a conflict and
the joint navigation needs to be mediated. In such cases,
pedestrians make eye contact or even use verbal commu-
nication to resolve the navigational conflict [19, 27, |8]].
These behaviors that are either instinctive or socially
learned by people, and will need to be incorporated into
a social robot’s behavior.

2) Context Understanding: Navigation in a familiar place
like one’s home will results with very different gaze

and motion patterns than navigation in an open mall or
in a hospital. For example, an early sociological study
showed that people tend to move in small groups rather
than alone, but that the group size distribution highly
depends on context [3]. In order to be able to leverage
the gaze of pedestrians, the robot should be aware of the
context of the interaction.

3) Cultural Differences: Different countries have different
social norms when navigating in a crowd. It was com-
mon in our human study (see Hart et al. [8] for details)
for people to shift to the right in order to avoid other
pedestrians. However in other locations, people might
shift to the left or to the direction that they are already
more oriented towards.

As we continue to develop systems for social navigation,
we expect to be able to handle a richer set of features handing
a wider variety of situations and conforming to factors such
as external context and cultural norms.
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