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Abstract—This paper explores learning group-aware naviga-
tion policies based on dynamic group formation using deep
reinforcement learning. Through simulation experiments, we
show that group-aware policies achieve greater robot navigation
performance (e.g., fewer collisions), minimize violation of social
norms and discomfort, and reduce the robot’s movement impact
on pedestrians when compared to the baseline.

I. INTRODUCTION

Mobile robots that are capable of navigating crowded human
environments in a safe, efficient, and socially appropriate
manner hold promise in bringing practical robotic assistance
to a range of applications, including security patrol, emer-
gency response, and parcel delivery. As human movements
are fast, dynamic, and following delicate social norms, en-
abling human-aware robot navigation has been proven to be a
challenging task and sparked many interests [4, 17, 13, 18].
While prior works [10, 21, 19, 2, 14, 11] have mainly treated
people as individual, independent entities in robot navigation,
the majority of people walk in groups [9, 1]; an empirical
study showed that up to 70% of pedestrians in a commercial
environment walked in groups [15]. It is therefore important
that a mobile robot respects human grouping (e.g., not to
cut through a social group) during its navigation in a human
environment.

In this work, we consider the problem of a robot inter-
acting with dynamic human groups—people walking together
in groups—rather than standing groups that are commonly
seen in social events (e.g., [16]). While substantial efforts
have been made to model and understand dynamic groups
(e.g., [15, 23, 3]), how mobile robots should navigate ef-
fectively and appropriately around dynamic human groups
is under-explored. For example, attention-based DRL has
been demonstrated to capture human-human and human-robot
interactions in crowded environments [5, 7]. Different from
these prior works, we explicitly include group modeling, rather
than a simple consideration of pairwise interactions between
individuals in a crowd [6]. In addition, our approach uses a
more compact representation of group space by computing a
polygon based on the convex hull of the pedestrians instead
of the F-formation as in prior works [22, 12].

Toward successful robot navigation in crowds of human
groups, we propose a learning method that allows the robot
to safely reach its desired goal while minimizing impact to
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Fig. 1: The objective of this work is to learn a navigation policy
that allows the robot to safely reach its goal while minimizing
impact to individual and groups of pedestrians.

individual and groups of pedestrians (Fig. 1). Our contributions
include:

• A reinforcement learning (RL) algorithm that combines
robot navigation performance and group-aware social
norms for learning a robust policy;

• A novel reward function that uses the convex hull of a
group as the group space to minimize impact to pedestrian
groups and improve navigation performance;

• Software extensions to the CrowdNav simulation envi-
ronment [5] to support social navigation research; and

• Experimental results that demonstrate the efficacy of our
learned policy with respect to robot navigation perfor-
mance, human navigation performance, and maintenance
of social norms.

II. PRELIMINARIES

A. Problem Formulation

Our main objective is to learn a controller that allows a
robot to navigate to a desired goal while maintaining social



norms and avoiding collisions with groups of pedestrians. We
formulate our approach using reinforcement learning (RL) to
learn a policy to meet the stated objectives. In this form of a
Markov decision making process, the robot uses observations
to generate a state vector, S, and chooses an action, A, that
maximizes expectation of the future reward, R.

The state space, S, consists of observable state information
for each pedestrian i, represented as Pedi as well as internal
state of the robot represented as Rob as described by Eq. 1.
Here, px and py are the x and y coordinates of the position,
vx and vy are the x and y coordinates of the velocity, rad is
the radius of the pedestrian or the robot, gx and gy represent
the x and y goal positions, v pref is the preferred velocity
and θ is the turn angle.

Pedi = [px, py, vx, vy, rad],

Rob = [px, py, vx, vy, rad, gx, gy, v pref, θ],

Si = [Pedi,Rob]
(1)

B. Group Aware Social Force Model

We developed a custom Python implementation of the
extended Social Force Model 1 for the CrowdNav environment
using an extended Social Force Model (SFM) proposed by
Moussaid et al. [15] to simulate dynamic social groups. In the
extended SFM, each individual’s motion, as defined in Eq. 2,
is driven by a combination of an attractive force
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The group term is defined as the summation of the attractive
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group within their vision field to simulate with-in group social
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III. APPROACH

To evaluate our group aware policy, we extend the existing
CrowdNav simulation environment [5] to represent pedes-
trian motion in groups. We accomplish this by stochastically
sampling the number of groups per episode using a Poisson
distribution (λ = 1.2) [8] and then randomly assigning
pedestrians to the groups. The average number of groups and
group size for five pedestrians are 2.5 and 1.96, respectively.
For ten pedestrians, the number of groups and group size
increase to 4.9 and 2.0, respectively.

1https://github.com/yuxiang-gao/PySocialForce

A. Policy based on Convex Hull of Group

To train the policy, we use a multi-term reward function that
encourages the robot to reach its goal while maintaining social
norms and avoiding collisions with groups of pedestrians. In
particular, we focus on social norms that minimize discomfort
to individuals and discourage intersections with a group of
pedestrians. Our reward function is given by Eq. 4, where
dgoal is the distance from the robot to the goal, dcoll. = 0.6
is the distance between the centers of entities beneath which
a collision is considered to have occurred, di is the distance
between the robot and pedestrian i, ddisc. = dcoll. + 0.2 is
the minimum “comfortable” distance between a robot and a
pedestrian (as in [5]), and dj is the distance from the robot
to the edge of the convex hull surrounding group j:

R(t) =Cprog.(dgoal(t− 1)− dgoal(t))

+ Cgoalδ(dgoal(t) < dcoll.)

− Cdisc.

∑
i

(ddisc. − di(t))δ(dcoll. ≤ di(t) ≤ ddisc.)

− Ccoll.

∑
i

δ(di(t) < dcoll.)

− Cgroup

∑
j

δ(dj(t) < dcoll.).

(4)
The multiple objectives are weighted via the following con-
stants: Cprog. = 0.1, Cgoal = 1.0, Cdisc. = 0.5, Ccoll. = 0.25,
and Cgroup = 0.25. The first term encourages the robot to
progress toward the goal, allowing us to remove the initial
imitation learning phase in [5]. The second, third, and fourth
terms encourage the robot to reach the goal, avoid close
encounters with pedestrians, and avoid collisions, respectively.
The last term encourages the robot to adhere to group social
norms by penalizing any incursion into a group’s “space.”
To determine the dj terms, we first compute a polygon
representing the convex hull of the positions of all members of
the pedestrian group. We then calculate the minimum distance
between the robot and the polygon and penalize the robot for
intruding into this space.

B. Neural Network Design

Our overall network architecture is depicted in Fig. 2.
Our architecture matched that of [5] without the interaction
module and (1) with a softmax layer being added to produce
a categorical policy output and (2) a single fully-connected
layer with 100 neurons connecting to a scalar value head.
This configuration enabled actor-critic learning. Our agents
were trained using proximal policy optimization (PPO; [20]),
a leading model-free, actor-critic approach. Hyperparameters
were chosen to mimic those used for Atari in [20], with the
exceptions of shorter windows (16 steps) and more windows
per batch (64). This change was made to accommodate the
shorter episodes of CrowdNav while maintaining the number
of experiences per batch.



Fig. 2: This is the neural network architecture used for our attention-based, actor-critic policy. The CrowdNav Simulation
Environment [5] on the left provides agent states information and the reward to the policy. The pedestrian and robot state
vectors are concatenated to represent a pairwise combined state vector; the network outputs the policy π over potential actions
and value V of the current state. The gray and green blocks indicate features from individual pedestrians. The blue blocks
indicate aggregate features across pedestrians. The argmax of the policy is chosen as the action, which subsequently is sent to
the CrowdNav Simulation Environment to control the robot.

Method #
Groups

#
Peds.

Succ.
↑

Ped.
Coll.
↓

TO
↓ Mean Time (s) ↓ Mean Robot Vel.

(m/s) ↑
Mean Ped. Vel.
(m/s) ↑

Mean Ped.
Angle (◦) ↓

Baseline 1 5 237 11 2 8.24 t(471) = 9.62 0.962 t(498) = 0.60 1.170 t(498) = 5.18 3.76 t(498) = 1.65
Group Aware 1 5 236 9 5 8.92 p < .001 0.964 p = .551 1.183 p < .001 3.59 p = .100

Baseline 2.548 5 238 12 0 8.23 t(478) = 7.73 0.964 t(498) = 0.51 1.136 t(498) = 1.32 5.99 t(498) = 3.23
Group Aware 2.548 5 242 8 0 8.81 p < .001 0.961 p = .610 1.146 p = .186 5.59 p = .001

Baseline 1 10 222 23 5 8.59 t(452) = 11.19 0.955 t(498) = 0.21 1.161 t(498) = 2.06 4.11 t(498) = 1.86
Group Aware 1 10 232 14 4 9.87 p < .001 0.956 p = .833 1.174 p = .040 3.93 p = .064

Baseline 4.884 10 239 10 1 8.72 t(478) = 18.83 0.960 t(498) = 6.39 1.089 t(498) = 3.53 8.09 t(498) = 8.41
Group Aware 4.884 10 241 9 0 10.21 p < .001 0.918 p < .001 1.108 p < .001 7.07 p < .001

TABLE I: This table summarizes the pedestrian and robot navigation performance across 5 and 10 pedestrians. Bold text
indicates statistically significant results. We show that our group aware policy is able to achieve comparable or better robot
navigation performance while allowing pedestrians to achieve faster velocities with less deviation from their desired goal.

Method Num.
Groups

Num.
Peds.

Group
Intersections ↓

Individual
Discomfort ↓

Ped. Social
Force ↓

Robot Social
Force ↓

Baseline 1 5 143 3.10 t(498) = 3.48 0.375 t(498) = 3.43 0.523 t(498) = 1.95
Group Aware 1 5 15 1.29 p < .001 0.351 p < .001 0.482 p = .051

Baseline 2.548 5 151 2.87 t(498) = 0.49 0.522 t(498) = 3.95 0.716 t(498) = 2.78
Group Aware 2.548 5 22 2.63 p = .625 0.485 p < .001 0.657 p = .006

Baseline 1 10 176 4.20 t(498) = 2.92 0.395 t(498) = 3.99 0.707 t(498) = 3.85
Group Aware 1 10 29 2.31 p = .004 0.366 p < .001 0.597 p < .001

Baseline 4.884 10 258 4.94 t(498) = 4.99 0.681 t(498) = 7.32 0.964 t(498) = 4.80
Group Aware 4.884 10 20 2.29 p < .001 0.599 p < .001 0.849 p < .001

TABLE II: This table summarizes metrics associated with social compliance across 5 and 10 pedestrians. Bold text indicates
statistically significant results. We show our group aware policy leads to more socially compliant navigation indicated by fewer
instances of group intersection while reducing individual discomfort and overall social forces on the pedestrians and the robot.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The goal of our experiments is to assess the efficacy of our
group-aware navigation policy. Our experiments involved four
settings determined by two factors: the number of pedestrians
and the number of groups. We explored both 5- and 10-person
settings as well as a single group and a stochastic number of

groups (Sec. III). We used the Circle Crossing scenario where
groups of pedestrians started and ended around the perimeter
of a circle (radius = 4 m) during training and evaluation.
We evaluated our trained policy on 250 trials with randomly
initialized starting and ending pedestrian positions for the four
settings. Lastly, our comparison baseline was based on [5],
without inclusion of the group-aware reward term.
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Fig. 3: The left figures give some representative examples of the robot navigating through the crowd of pedestrians over
time using both the baseline and the group aware policy. The baseline policy chooses actions that cut through the group of
pedestrians and influences the group formation, while the group aware policy chooses actions that move around the group
with minimal disturbance. The figure on the right shows the average distance between the pedestrian and the robot (top) and
the average pedestrian velocity (bottom) over time. Here, we show the group aware policy results in increased distance to the
pedestrians while allowing the pedestrians to maintain faster speeds.

B. Metrics

Our evaluation was focused on 1) robot navigation perfor-
mance, 2) pedestrian navigation performance, and 3) social
compliance. For robot navigation performance, our metrics
represent the quality of the robot’s ability to navigate to the
goal quickly without collision. Specifically, we measured the
number of success, collisions, timeouts, the average time to
goal, and the average velocity of the robots.

To assess pedestrian performance, we measured the impact
of the robot’s navigation behavior on the desired pedestrian
motion. Specifically, we measured the average velocity the
pedestrians and the average angular deviation between the
pedestrian’s observed motion and the direct vector to the
pedestrian’s goal, which reflects the pedestrians’ disturbance
from the optimal trajectory to the goal caused by the robot.

Finally, to assess social norms, we quantified how the robot
maintained social distance among individual pedestrians and
limited intersections with groups of pedestrians. For this, we
considered the number of groups intersected by the robot, the
mean social force applied to each pedestrian, the average social
force applied to the robot, and theindividual discomfort caused
by the presence of the robot, which is defined as the mean
distance between the robot and the pedestrians aggregated
over all pedestrians when the robot violates the discomfort
threshold (0.2 m).

C. Results

We conducted independent two-tailed t-tests to compare our
group-aware and the baseline policies. For all the statistical
tests, we used an α level of .05 (p < .05) for significance.
Table I summarizes the robot and pedestrian navigation per-
formance as well as their corresponding statistical test results.
Overall, the group aware policy generally led to higher number

of successful trials, while allowing the pedestrians to travel at
faster speeds with less disturbance towards the goal.

In Table II, we summarize the social compliance results with
their corresponding statistical test results. As indicated by this
table, the group aware policy yielded an 88% improvement in
reducing the number of instances where the robot navigated
through a group. Moreover, the group aware policy resulted
in a 43% reduction in individual discomfort. In addition, we
observe that the group aware policy improved the overall social
forces applied to the pedestrians and robot.

We note that the robot with the group aware policy took
longer to reach the goal. Fig. 3 illustrates an example of
such behavior. The resulted group-aware behavior ultimately
enabled greater group cohesion and less disruption while
improving group and individual discomfort.

V. DISCUSSION

This paper explores group-aware behaviors that respect
pedestrian group formations and trajectories while minimally
sacrificing robot navigation performance. Our results show
that the learned policy is able to achieve higher number of
successful trials, fewer collisions, and less impact to the pedes-
trian’s motion towards their goal. Additionally, our learned
policy not only reduced the number of group violation but also
decreased the individual discomfort and social forces applied
to the pedestrians and robot. Our approach, however, resulted
in an increase of the robot’s total time to goal when compared
to the baseline. This increase was expected as the robot sought
to move around groups as opposed to navigate through them
(Fig. 3). However, our results show that even though the total
time to goal increased, the average velocity of the robot was
mostly unaffected by the group aware policy.

Our exploration indicates several directions of future re-
search. First, we would like to determine how well our learned



policy reflects actual human motion. Second, we would like to
investigate whether we can bootstrap our learned policy with
imitation learning using observations of humans navigating
groups of pedestrians. Third, we would like to investigate
different representations of group space beyond the convex
hull approach described in this paper. We speculate that
considering additional parameters, such as social interaction
during movement, the specific formation of the group, and
environmental cues (e.g., social space), may contribute to
learning more socially compliant navigation policies.
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