
Encoding Defensive Driving as a Dynamic Nash Game†

Chih-Yuan Chiu,∗ David Fridovich-Keil,∗ and Claire J. Tomlin

Abstract— We present a novel formulation of safety and
robustness for autonomous systems within a general-sum dy-
namic game theory framework, based on defensive driving.
Specifically, we encode an adversarial phase into the ego agent’s
cost function, i.e., a time interval in which other agents are
assumed to be temporarily distracted, to robustify the ego
agent’s equilibrium trajectory against other agents’ potentially
dangerous behavior in this time. We illustrate that our new for-
mulation effectively encodes safety in multiple traffic scenarios.

I. INTRODUCTION

In designing autonomous systems, practitioners typically
employ one of two prevailing notions of “safety” and “ro-
bustness:” adversarial and probabilistic constraint satisfac-
tion. In this work, we introduce a third, distinct notion of
safety. Like adversarial formulations, our work is based upon
noncooperative differential game theory; however, unlike
such methods, our approach is not equivalent to a single two-
player zero-sum differential game, and naturally extends to
an arbitrary number of agents.

Our work is based upon the literature in differential
game theory and adversarial reachability [1–5]. Adversarial
reachability methods [6–9] seek to identify when a system’s
state can be driven, despite worst-case bounded disturbance,
toward one set and away from another. However, in our case,
we study safety and robustness in the context of differential
games with an arbitrary number of agents. We divide the
time horizon into two parts: an adversarial part followed by
a cooperative part. During the adversarial portion, the ego
agent presumes that other agents wish to harm it and encodes
such behavior in the cost structure of the game, and during
the cooperative portion of the time horizon it presumes that
other agents will try to help it (e.g., to avoid collision).

II. RELATED WORK

A. Adversarial Reachability

Adversarial reachability methods [6–9] construct a zero-
sum differential game between two agents, and appropri-
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ately describes many dynamic interactions, e.g., capture-the-
flag and reach-avoid games [1, 2]. However, this zero-sum
formulation is inadequate for motion-planning tasks, e.g.,
traffic scenarios with multiple interacting vehicles. Moreover,
the adversarial nature of the zero-sum game leads to the
construction of extremely conservative ego trajectories, since
the ego agent must imagine the worst-case non-ego behaviors
that can possibly transpire. Our approach, on the other
hand, considers a general-sum game applicable to N -player
scenarios, and avoids considering purely adversarial non-ego
trajectories. That is, we model antagonistic non-ego behavior
using the novel notion of an adversarial-to-cooperative time
horizon, rather than as a worst-case bounded disturbance.

B. Probabilistic Constraint Satisfaction

In motion planning, probabilistic constraint satisfaction
approaches bound the probability that an ego agent, operating
in an environment with stochastic disturbances, becomes
unsafe [10]. In particular, risk-sensitive algorithms guard the
ego agent from low-probability, yet highly dangerous out-
comes, e.g., by using exponential-quadratic cost terms [11] or
by associating individual constraint violations with different
penalties [12]. However, these methods merely account for
the nonzero probability of unsafe outcomes occurring any
time within the entire time horizon. By contrast, our work
allows the ego to explicitly encode adversarial non-ego
behavior inside a specific subset of the time horizon, when
such behavior is most expected to occur.

C. Algorithms for Solving Dynamic Games

General-sum differential games can be directly solved
by numerically solving a set of coupled Hamilton-Jacobi
equations, whose solutions yield Nash equilibrium (NE)
strategies [4, 5], via state space discretization. However,
the computational cost and memory of these algorithms
scale exponentially with the state dimension, and are thus
unsuitable for modeling the high-dimensional, multi-player
interactions considered in our paper [13]. On the other hand,
Iterative Best Response (IBR) algorithms [14, 15] iterate
through the players, repeatedly solving the optimal control
problem of finding the best-response strategy of each player,
assuming all other players’ strategies are currently fixed at
the previous iterate. Replacing the full dynamic game with
a sequence of optimal control problems reduces computa-
tion time at each iteration; however, IBR algorithms can
still be computationally inefficient overall. Moreover, IBR
algorithms often converge only to a local Nash equilibrium
(LNE), or fail to converge.
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To iteratively solve linear-quadratic games, our work
uses ILQGames [16], a recently developed iterative linear-
quadratic algorithm that incurs computational complexity
cubic in the number of players and linear in the time horizon,
and is guaranteed to rapidly converge to an LNE [17].

III. PRELIMINARIES

Consider the N -player finite horizon general-sum differ-
ential game with deterministic nonlinear system dynamics:

ẋ = f(t, x, u1:N ). (1)

Here, x ∈ Rn is the state of the system, obtained by
concatenating the dynamical quantities of interest of each
player, t ∈ R denotes time, ui ∈ Rmi is the control
input of player i, for each i ∈ {1, · · · , N} := [N ], and
u1:N := (u1, · · · , uN ) ∈ Rm, where m :=

∑N
i=1mi. The

dynamics map f : R × Rn × Rm → Rn is assumed to be
continuous in t and continuously differentiable in x and ui,
for each i = 1, · · · , N and each t ∈ [0, T ]. Since we wish
to ensure the safety of one particular player amidst their
interactions with all other players, we refer to Player 1 as
the ego agent, and the other players as non-ego agents. Each
player’s objective is defined as the integral of a running cost
gi : [0, T ]× Rn × Rm → R over the time horizon [0, T ]:

Ji
(
u1:N (·)

)
=

∫ T

0

gi
(
t, x(t), u1:N (t)

)
dt, (2)

for each i ∈ {1, · · · , N}. The running costs gi depend
implicitly on the state trajectory x(·) : [0, T ] → Rn and
explicitly on the control signals ui(·) : [0, T ]→ Rm.

To minimize its cost, each player selects a control strategy
to employ over the time horizon [0, T ]. At each time t ∈
[0, T ], each player i observes the state x(t) (but no other
control input {uj(t) | j 6= i}), and uses this information to
design its control, i.e.

u(t) := γi(t, x(t)),

where γi : [0, T ]×Rn → Rmi , defined as Player i’s strategy,
is measurable. The strategy space of Player i, denoted Γi, is
defined as the collection of all feasible strategies of Player
i’s. The overall cost Ji of each Player i is denoted by:

Ji(γ1; · · · ; γN ) := Ji
(
γ1(·, x(·)), · · · , γN (·, x(·))

)
.

In practice, we solve for strategies γi that are time-varying,
affine functions of x.

We now define the Nash equilibrium of the above game.
Definition 1: (Nash equilibrium, [3, Ch. 6]) The strategy

set (γ?1 , · · · , γ?N ) is called a Nash equilibrium if no player is
unilaterally incentivized to deviate from his or her strategy.
Precisely, the following inequality, i.e., for each player i:

J?
i := Ji

(
γ?1 , . . . , γ

?
i−1, γ

?
i , γ

?
i+1, . . . , γ

?
N

)
(3)

≤ Ji
(
γ?1 , . . . , γ

?
i−1, γi, γ

?
i+1, . . . , γ

?
N

)
,∀γi ∈ Γi.

Computing a global Nash equilibrium is intractable for
dynamic games with general dynamics and cost functions.
Instead, in this work, we seek a generalized local Nash
equilibrium, which is defined similarly to (3), but with the in-
equalities only constrained to hold within a neighborhood of

the strategy set (γ?1 , · · · , γ?N ), and with additional constraints
imposed on each player. These constraints model appropriate
vehicular behavior in traffic scenarios.

IV. METHODS

Our main contribution is a novel formulation of safety,
best understood through the lens of defensive driving. In
Sec. IV-A, we describe how, in the ego agent’s mind,
the concept of defensive driving can be encoded into the
running cost of each non-ego agent, i.e. gi(x, u1:N ), for
each i ∈ {2, · · · , N}. To demonstrate this defensive driving
framework in practice, we simulate realistic traffic scenar-
ios; Sec. IV-B details the dynamics, costs, and constraints
imposed on the various agents in these simulations. Finally,
in Sec. IV-C, we summarize the ILQGames algorithm as the
main feedback game solver used in this work.

A. Encoding Defensive Driving as a Running Cost

In our framework, the ego agent (Player 1) encodes the
assumption that all other agents are momentarily distracted,
by imagining the overall time horizon [0, T ] as divided
into two sub-intervals: adversarial ([0, Tadv]) and cooperative
([Tadv, T ]), with 0 < Tadv < T . During the adversarial
interval, the ego imagines other agents to be “momentarily
distracted,” and wishes to act defensively. This phenomenon
is modeled using an adversarial running cost gadv,i : Rn ×
Rm → R for each i ∈ {2, · · · , N}. During the cooperative
interval, the ego supposes that other agents have reverted to
“normal” or “cooperative” behaviors, and thus proceeds in
a less conservative manner. This behavior is captured using
a cooperative running cost gcoop,i : Rn × Rm → R for each
i ∈ {2, · · · , N}. In other words, the running cost of each
non-ego agent gi can be piecewisely defined as follows:

gi(t, x, u1:N ) =

{
gadv,i(x, u1:N ), t ∈ [0, Tadv),

gcoop,i(x, u1:N ), t ∈ [Tadv, T ].

In this scenario, the net integrated cost Ji, first defined in
(2) can be written as follows:

Ji =

∫ Tadv

0

gadv,i(x, u1:N )dt+

∫ T

Tadv

gcoop,i(x, u1:N )dt . (4)

With increasing Tadv, the ego agent imagines an increasingly
adversarial encounter and acts more and more defensively
as a result. In practice, the user or system designer would
select a suitable Tadv before operation, e.g., by choosing the
largest Tadv such that the solution deviates sufficiently little
from a nominal solution (with Tadv = 0).

B. Simulation Setup

To test this construction, we simulate two traffic encoun-
ters in ILQGames [16] that involve significant interaction
(see Sec. V), in which a responsible human driver would
likely drive defensibly. Our method captures the spectrum
of this “defensive” behavior as Tadv, the adversarial time
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horizon duration, is varied. In each setting, each agent (in
this case, each car) has augmented bicycle dynamics, i.e.:

ṗx,i = vi sin θi, v̇i = ai,

ṗy,i = vi cos θi, φ̇i = ωi, (5)

θ̇i = (vi/Li) tanφi, ȧi = ji,

where x = (px,i, py,i, θi, vi, φi, ai)
N
i=1 describes the position,

heading, speed, front wheel angle, and acceleration of all
vehicles, and for each, ui = (ωi, ji) describes the front wheel
rate and tangent jerk, while Li is the inter-axle distance.

We define gadv,i and gcoop,i as weighted combinations of
the following functions, with different behavior encouraged
through the use of different weighting coefficients. We denote
pi = (px,i, py,i) for each agent’s position, d`i(pi), defined
below, for the distance between an agent and the correspond-
ing lane centerline `i in the (px,i, py,i)-plane, and dprox for
a constant desired minimum proximity between agents:

lane center:
[
d`i(pi) := min

p`∈`i
‖p` − pi‖

]2
(6)

ideal speed: (vi − vref,i)
2 (7)

cooperative: 1{‖pi − pj‖ < dprox}(dprox − ‖pi − pj‖)2 (8)

adversarial: ‖pi − pj‖2 (9)

input: uTi Riiui . (10)

Recall that, for non-ego agents, the “adversarial” cost is
only present during the adversarial horizon [0, Tadv) and
the “cooperative” cost is present thereafter during the co-
operative horizon [Tadv, T ]. We also enforce the following
inequality constraints, where dlane denotes the lane half-
width, and vi and vi denote speed limits:

proximity: ‖pi − pj‖ > dprox (11)
lane: |d`i(pi)| < dlane (12)

speed range: vi < vi < vi , (13)

Here, the “proximity” constraint is enforced for only the ego
agent, to force the ego to bear responsibility for satisfying
joint state constraints which encode his or her own safety
(e.g., non-collision). In addition, all agents must satisfy in-
dividual constraints that encode reasonable conduct in traffic
(e.g., staying within a range of speeds). All constraints are
enforced over the entire time horizon [0, T ]. For all tests, we
use a time horizon T = 15 s and discretize time (following
[16] and [3]) at 0.1 s intervals.

C. Implementation Details

The traffic simulations in this work are solved approx-
imately to local feedback Nash equilibria in real time us-
ing ILQGames, an open-source C++-based game-solving
algorithm introduced recently in [16]. ILQGames iteratively
solves linear-quadratic games, obtained by linearizing dy-
namics and quadraticizing costs, and incurs computational
complexity cubic in the number of players [16]. As discussed
above, we must also account for equality and inequality con-
straints on the game trajectory. While [16] does not address

constrained Nash games, here we incorporate constraints via
augmented Lagrangian methods [18]. For a more detailed
discussion of constraint-handling in feedback Nash games,
see [17]. Though other game solvers, e.g., ALGAMES [19]
and Iterative Best Response algorithms [15], also handle
constraints, they only apply to open-loop games. For a
thorough treatment of constraints in games, see [20].

V. RESULTS

We present simulation results for various traffic scenarios
in which a responsible traffic participant would likely drive
defensively. First, we consider a simple situation involving
oncoming vehicles on a straight road, as a proof of concept.
Then, we analyze a more complicated intersection example
with a crosswalk. In both cases, the ILQGames algorithm
solves the defensive driving game quickly, in under 1 s.

A. Oncoming Example

In this example, the ego car is traveling North on a straight
road when it encounters another car traveling South. Since
the road has a lane in each direction, “ideally” the ego
vehicle would not deviate too far from its lane or speed.
However, to drive more defensively, the ego vehicle should
plan as though the oncoming Southbound car were to act
noncooperatively. Our method encodes precisely this type
of defensive planning. Fig. 1 shows the planned trajectories
that emerge for increasing Tadv. As shown, the ego vehicle
(bottom) imagines more aggressive maneuvers for itself and
the oncoming car (top) as Tadv increases. Note, however, that
these are merely imagined trajectories and that (a) the ego
vehicle can always choose to follow this trajectory only for
an initial period of time, and recompute its trajectory there-
after with updated state information, and (b) the oncoming
vehicle will make its own decisions and will not generally
follow this “partially adversarial” trajectory. We solve each
of these problems (with fixed Tadv) in under 0.5 s.

B. Three-Player Intersection Example

We introduce a more complicated scenario designed to
model the behavior of two vehicles and a pedestrian at an
intersection. As shown in Fig. 2, the ego vehicle is present
in the intersection alongside a non-ego vehicle heading in
the opposite direction, who wishes to make a left turn, and
a pedestrian, who wishes to cross the road. To reach their
goal locations, these three agents must cross paths in the
intersection. When Tadv = 0 s, the ego vehicle swerves left
to avoid the non-ego vehicle at the intersection, because
it expects the non-ego (turning) vehicle to always behave
cooperatively, i.e., continue along its curved path at nominal
speeds, resulting in a collision-free trajectory. However, as
with the oncoming example, the ego vehicle’s trajectory
becomes increasingly more conservative as the adversarial
time horizon increases in length. In particular, when Tadv =
0.5 s, the ego slows to avoid the turning vehicle; when
Tadv = 1 s, the ego accelerates aggressively to speed ahead
of the non-ego vehicle. This is because in this scenario, the
oncoming vehicle is initially slower than the ego vehicle, and
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Fig. 1: Oncoming example. The ego (right lane, heading upwards) and oncoming (left lane, heading downwards) vehicles perform
increasingly extreme maneuvers as Tadv increases. Blue, turquoise, and green represent agents’ locations for Tadv = 0, 2.5, 5 s, respectively.
Panels show agent positions as time elapses. When Tadv = 0 s, the ego travels in a straight line because it expects the non-ego vehicle to
always be cooperative. However, when Tadv = 5 s, the ego swerves outward to dissuade the non-ego vehicle from attempting a collision.

Fig. 2: Three Player Intersection example. The ego agent (right lane, heading upwards) navigates an intersection while avoiding
collision with an oncoming vehicle (left lane, heading downwards initially before making a left turn) and a pedestrian (horizontal path at
the intersection, left to right). Blue, turquoise, and green represent agents’ locations at Tadv = 0, 0.5, 1 s, respectively. When Tadv = 0 s, the
ego expects the non-ego to travel at nominal speeds and approach the intersection first, and thus swerves leftwards, to avoid a collision.
However, when Tadv = 1 s, the ego vehicle accelerates and swerves rightwards to avoid the non-ego vehicle, to dissuade the oncoming
vehicle from attempting a collision. The pedestrian also slows for the same reason.

will thus approach the intersection at the same time as the ego
vehicle. Each problem is solved in 0.75 s in single-threaded
operation on a standard laptop, via the ILQGames algorithm
[16]. This performance indicates real-time capabilities which
will be explored in future work on hardware.

VI. DISCUSSION

We present a novel formulation of robustness in motion
planning for multi-agent problems. Inspired by defensive
driving, our method explicitly models other agents as adver-

sarial in only a limited, initial portion of the overall planning
interval. Thus, our approach generates far less conservative
behavior than purely adversarial methods. Simulation results
illustrate that these “defensive” problems can be solved
in real-time. Future work includes modeling human intent
and preferences both via players’ cost functions and the
adversarial horizon Tadv itself [21]. This will enable our
framework to better respond to human behaviors in various
autonomous driving scenarios [22, 23].
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