
DeepSocNav: Social navigation by imitating human
behaviors

Juan Pablo de Vicente and Alvaro Soto1

Abstract—Current datasets to train social behaviors are
usually borrowed from surveillance applications that capture
visual data from a bird’s-eye perspective. This leaves aside
precious relationships and visual cues that could be captured
through a first-person view of a scene. In this work, we propose
a strategy to exploit the power of current game engines, such as
Unity, to transform pre-existing bird’s-eye view datasets into a
first-person view, in particular, a depth view. Using this strategy,
we are able to generate large volumes of synthetic data that can
be used to pre-train a social navigation model. To test our ideas,
we present DeepSocNav, a deep learning based model that takes
advantage of the proposed approach to generate synthetic data.
Furthermore, DeepSocNav includes a self-supervised strategy
that is included as an auxiliary task. This consists of predicting
the next depth frame that the agent will face. Our experiments
show the benefits of the proposed model that is able to outperform
relevant baselines in terms of social navigation scores.

I. INTRODUCTION

A desirable skill to operate in a human inhabited environ-
ment is to exercise social navigation, i.e., navigate in a way
that does not hinder other humans present in the environment.
Due to this, traditional navigation techniques based on algo-
rithms such as A* or potential field are not applicable [20].
This is because they do not take into consideration people’s
intrinsic social behaviors.

Previous works have tried to solve this problem. In par-
ticular, previous attempts can be classified into two main
groups: model-driven and data-driven approaches. On the
one hand, model-driven approaches are characterized by an
explicit use of relevant relationships and rules that guide
navigational behaviors in a social context. Examples of model-
driven approaches for social navigation are [2, 14, 15, 16, 17,
18, 22, 23, 29], which mainly use the so-called social force
[11] to model the social navigation of passers-by. As a major
limitation, these approaches lack enough flexibility to handle
unexpected or complex situations.

On the other hand, data-driven approaches seek to learn
social behaviors by extracting knowledge from a large number
of examples. This has the advantage of automatically inferring
complex relationships from data. Human behavior is highly
stochastic [5, 13] and varies depending on factors such as
culture [1]. As a consequence, the increased flexibility of
data-driven techniques usually leads to models that outperform
model-driven counterparts [6, 5, 7, 12, 10].

A relevant complexity to implement a data-driven approach
for social navigation is the need for a large volume of data.

*This work was partially funded by FONDECYT grant 1181739
1J. de Vicente and A. Soto, Dept. of Computer Science, Pontificia Universi-

dad Catolica de Chile, (jpdevicente@uc.cl, asoto@ing.puc.cl)

Furthermore, the type of data collected plays a significant
role in the quality of the final solution. In terms of social
navigation, currently most public datasets consist of third-
person recordings [4], usually in bird’s-eye view, with works
that make use of this datasets such as [3, 9, 28, 10]. This
means that models that directly use this data are limited to
a 2D representation of the scene, which leaves aside useful
relationships that can be captured through 3D observations
and limits solutions to areas with a top side view or to use
more expensive sensors such as LiDAR scanners to replicate
a bird-eye view. A possible way to alleviate this problem is to
record and tag first-person navigational data. Unfortunately,
this approach does not scale properly, mainly due to the
complexity of measuring the velocity and position of the first-
person agent and the cost associated to capture a sizable
amount of data.

This work helps to overcome this limitation by developing
a virtual environment that allows us to transform the abundant
bird’s-eye view data to first-person views of all agents present
in a giving scene. The simulated environment also features
realistic human models and animations, increasing the infor-
mation available to implement social navigational behaviors.
Furthermore, it is also possible to include artificial agents to
enrich the original data. Motions of these artificial agents do
not ensure social behaviors but, as we show in this work, are
useful to pre-train a model to acquire basic navigation skills.

In addition to the simulated environment, we also present
DeepSocNav, a supervised learning model that seeks to imitate
the social behaviors of real humans in crowded environments,
using a first-person depth view. This model is capable of
learning to replicate the navigational patterns of the agents
present in the data. In this way, the model is encouraged to
develop a social policy closer to what people do. Furthermore,
to guide learning, DeepSocNav also learns the auxiliary task
of predicting the next depth frame that the agent will face.
This fosters the model to acquire a notion of space and agents
in its visual field, thus improving its social performance and
its ability to avoid collisions.

We support our contributions with suitable experiments to
evaluate the main components of our model, conducting an
ablation analysis to demonstrate its benefits.

II. PROPOSED METHOD

A. Description of the problem

Current datasets to train social behaviors are usually bor-
rowed from surveillance applications that capture visual data
from a bird’s-eye perspective [19]. This limits the scope of

a model to consider only position and speed of passers-by.
Furthermore, the resulting model is constrained to an operation
where a bird’s-eye camera is present or to rely on expensive
equipment such as LiDAR sensors to simulate a bird’s-eye
view [10]. This situation motivates our proposed method that
starting from a pedestrian’s trajectory dataset corresponding to
a bird’s-eye perspective is able to recreate the corresponding
first-person views, in particular, a view of depth information.
This would enable a mobile robot to only require a depth
camera to operate.

B. First-person view data generation

For the recreation of the datasets using a first-person view,
we develop a simulated environment using Unity, a video game
development engine [26]. This environment loads previously
designed maps and recreate the trajectory of agents using the
data sequence of the agents’ position in time. Specifically, the
simulator moves each agent i from its current position (xit, y

i
t)

to next position (xit+1, y
i
t+1) at time instant t + 1 until the

agent reaches a target position (Gi
x, G

i
y). These displacements

follow a realistic walking animation through Unity’s animation
control asset [21].

Using the simulation, for each agent and time instant t,
a first-person depth view is stored, together with its current
coordinate (xit, y

i
t), target coordinate (Gi

x, G
i
y), and velocity

(vxit, vy
i
t). From this data, it is expected that the model can

learn the implicit social behaviors underlying the trajectories
of the agents in the original dataset. An example of a recreated
frame in the simulated environment can be seen in Figure
1. Specifically, Figure 1a corresponds to a frame in the
original video and Figure 1b to its re-creation in the simulated
environment using a first-person depth view.

C. Data Augmentation

Besides its bird’s-eye view, a second limitation of current
pedestrian trajectory datasets is the limited size. Purely pedes-
trian datasets have usually a small volume, in the order of
1K to 15K people in total [19]. Furthermore, some of these
datasets do not include rich interactions among people, where
most pedestrian follow straight trajectories to reach their goals.
This may produce models that overlook the need to learn social
navigation skills, such as turning and deviating from a straight
line in order to avoid collisions.

To alleviate the data scarcity problem, we propose a data
augmentation scheme that takes advantage of the autonomous
navigation capabilities provided by the library NavMesh in-
cluded in Unity [21]. Specifically, using Unity, we can add
virtual agents to a scene that are instructed to reach randomly
generated goal positions. Using this scheme, we can generate
an almost unlimited amount of navigational trajectories. As a
main limitation, this artificial trajectories do not ensure social
behaviors. However, we can use them as a massive source
of data to train an initial navigational model that is able to
reach target positions while avoiding obstacles. Afterwards, we
can fine-tune this model using synthetic data that incorporates
social behaviors.

D. DeepSocNav

Following the usual setup [9, 11], social navigation is seen
as a problem of velocity prediction given a sequence of
observations. For each time instant t and agent i, we have
a measurement of its current position (xit, y

i
t), the coordinates

of its goal position G = (Gxit, Gy
i
t), and a depth image Di

t

corresponding to what the agent sees at time t according to a
first-person view. From a sequence of observations t−T to t,
the agent velocity (vxit+1, vy

i
t+1) is predicted for the following

time step t + 1. In this way the model can be defined as a
function f(st−T , ..., st, G) described as follows:

f(st−T , ..., st, G) = ~vt+1, st = (xt, yt, Dt) (1)

The positional entries (xt, yt) and target (Gx,Gy) are
normalized from the largest and smallest value possible among
all the maps. Because depth cameras have a limited range, we
imitate this limitation by defining the pixel value px,y,t in
depth images as follows:

px,y,t =

{
dx,y,t/dmax, if dx,y,t < dmax

1, otherwise
(2)

where dx,y corresponds to the distance between the agent’s
camera and the surface located on the pixel px,y; dmax is the
maximum range distance provided by the depth camera.

Figure 2 shows a schematic view of the learning architecture
behind DeepSocNav. Each depth frame of the history of T
observations is processed by a shared convolutional network
followed by a MLP. Also, an embedding of the current
position and goal of the agent is obtained with a shared MLP.
These embeddings are concatenated to feed a 2 layer LSTM.
Afterwards, the hidden state of the last cell of the LSTM is
used to feed two prediction heads that are explained next.

1) Head 1: Velocity prediction: The goal of this head is
to predict the velocity ~vt+1 that the agent must take given
observations st corresponding to the last T instants of time,
so that the agent arrives at the destination in a socially correct
way. For this, the output of the LSTM is processed by an MLP,
where the last one outputs (vxit+1, vy

i
t).

2) Head 2: Forecasting the future as an auxiliary task:
The goal of this head is to predict the future depth image
D̂t+1. This is added as an auxiliary task, which seeks to guide
learning by encouraging the model to learn the features needed
to predict how the scene will look in the close future. Our
hypothesis is that the ability to anticipate where objects and
agents in a scene will move is closely related to the ability to
know how they act.

3) Loss function: Following the two heads, the resulting
loss function L = Lv + kLD consists of two terms that
predict velocity and depth information, respectively, where k
is a weighting constant. These terms are defined as follow:

Lv =
∑
‖vt+1 − v̂t+1‖2w(t)

LD =
∑
‖Dt+1 − D̂t+1‖2w(t)

(3)

w(t) =

{
c, if min(px,y,t) < β

1, otherwise
(4)

(a) BIWI dataset: hotel top-down frame. (b) Simulated top-down and first-person views.

Fig. 1: a) Representative frame from the real scene present in the original dataset. b) Top and first person depth views of the
frame in a) recreated using the simulator.

x , y , Gt-T t-T

Shared
Convolutions

Shared
MLP

Agent position (x,y) in time and goal

Shared
MLP

RNN

Agent depth images in time
MLP

MLP

Vx ,Vyt+1 t+1
Velocity prediction

Agent predicted
future depth image

RNN

Transposed
Convolutions

x , y , Gt-1 t-1

x , y , Gt t

Input: S , Gt

Fig. 2: DeepSocNav overall architecture, it consists of two heads: i) Head 1 predicts velocity of an agent at time t+ 1 given
a history of previous observations from steps t− T to t, ii) Head 2 predicts depth image D̂t+1 for next time step t+ 1.

To prioritize learning behaviors that involve close obstacles,
we introduce the weighting w(t) in (4) which assigns a weight
c, where c > 1, to the output of the model when the depth
camera detects an object at a distance less than β.

III. EXPERIMENTS

To test our model, we use as a benchmark the ETH
BIWI Walking Pedestrians dataset (BIWI) [17]. This dataset
corresponds to RGB images from a bird’s-eye view of two
different scenarios: ETH and Hotel, for a total of 787 agents.
We recreate the scenes of this datasets in Unity using our
proposed methodology, extracting depth images using a first-
person view of each trajectory. We use the resulting data to
train our proposed model: DeepSocNav. Furthermore, using
the data augmentation scheme described in Section II-C, we
generate a total of 6,000 artificial trajectories on both maps.

In our experiments, we generate depth images using a
resolution of 320x240 pixels, a field of view of 135°, and
maximum range of dmax = 7[m]. To train DeepSocNav, both
synthetic and BIWI trajectories are randomly separated in 9

10
for training and 1

10 evaluation. In our experiments, we use
T = 10. Also, we use c = 2 to weight the predictions when
an obstacle is nearby, and k = 0.1 in the loss function.

As we describe in Section II-C, we use the synthetic
trajectories to pre-train DeepSocNav. Specifically, we pre-train

for 15 epochs, using a learning rate of 0.001 and Adam as
the optimizer. Afterwards, DeepSocNav is fine-tuned for 10
epochs using the synthetic depth images corresponding to the
BIWI dataset, Adam as the optimizer, and a learning rate of
0.0001. During testing, we use DeepSocNav to control the
navigation policy of the target agent at 10 [Hz]. Goal positions
follow the BIWI dataset, denoted as a circular area with a
radius of 1.5[mts]. In average, trajectories consist of 9[mts]
length.

Baselines. We consider the following baselines:

• Reciprocal Velocity Obstacles (RVO). RVO is imple-
mented in NavMesh, the navigational system included in
Unity [27].

• Social Force Model (SFM). In our implementation, we
use the hyperparameters described in [8]. Furthermore,
we only consider the forces of agents and obstacles
present in the visual range of the target agent.

• NaviGAN. NaviGAN is a generative navigation algo-
rithm that uses generative adversarial networks (GANs),
to learn how to generate routes that seek to optimize the
comfort and naturalness of these routes [25].

DeepSocNav ablation study. To study the contribution of
the different parts of the model, the following variations of

DeepSocNav are also considered.
• DeepSocNavnoAux: Does not include the auxiliary task

of predicting the depth image for the next frame.
• DeepSocNavT1: Uses T = 1 as the time window.
• DeepSocNavhalfPreTrain: Only uses half of the trajec-

tories for pre-train.
• DeepSocNavnoPreTrain: Does not include pre-training.

Model Social Score Collisions Success
GT 0.034 - -
RVO 0.067 - 1
SFM 0.054 0.037 1
DeepSocNav 0.040 0.018 1

TABLE I: Social results in online evaluation

Model ADE [m] FDE [m]
RVO 0.20 0.20
SFM 0.20 0.16
NaviGAN [24] 0.43 0.74
DeepSocNav 0.24 0.34

TABLE II: Distance relative to GT during testing.

Model Social Coll-. ADE FDE
Score ission [m] [m]

DeepSocNav 0.040 0.018 0.24 0.34
DeepSocNavnoAux 0.042 0.037 0.24 0.20
DeepSocNavT1 0.051 0.018 0.32 0.52
DeepSocNavhalfPreTrain 0.041 0.056 0.27 0.34
DeepSocNavnoPreTrain 0.047 0.094 0.33 0.41

TABLE III: Ablation results of online evaluation.

Metrics. The following metrics are used for evaluation.
• Social Score: Penalizes the agent with a cost cl each time

that it is inside a personal circle of another agent. We
define 3 circles of radii r1 = 0.5[m], r2 = 0.75[m],
r3 = 1.0[m] with a cost of c1 = 1, c2 = 0.5 and c3 = 0.1
respectively.

• Average Distance Error (ADE) with respect to GT.
• Final Distance Error (FDE) with respect to goal.
• Collisions: number of collisions.
• Success: successful goal reaching.

IV. RESULTS AND ANALYSIS

Table I and II shows the performance of DeepSocNav and
the baselines. In terms of the social scores (Social Score
and Collisions), DeepSocNav outperforms all the baselines.
In terms of success score, DeepSocNav has a perfect score.
In terms of the distance metrics (ADE and FDE), while
DeepSocNav has a competitive performance, SFM is able to
generate the most similar trajectories to the GT. However, it is
important to note that SFM uses explicit information about the
positions and velocities of the other agents, while DeepSocNav
only uses a first-person depth view.

We believe that by taking advantage of its first-person depth
view, DeepSocNav is able to learn and then infer rich infor-
mation about the intentions and potential trajectories of other

passers-by. This explains its advantages in the performance
with respect to state-of-the art techniques such as NaviGAN
[25], which corresponds to a deep learning model that uses
oracle information from other passers-by at the coordinate
level.

A. Ablation analysis

Table III shows an ablation analysis with respect to the main
components behind DeepSocNav. It is possible to note that
although the full model achieves the best results all around,
DeepSocNavnoAux ties it on ADE and scores the best result
in FDE. This means that predicting depth information for the
next frame helps to avoid collisions and to improve social
navigation, but there is a trade-off in terms of generating
trajectories that are similar to the GT over longer distances.

The version of DeepSocNav with the worst performance
overall is DeepSocNavT1. This supports the relevance of
keeping a small memory to perform correctly in the task.
However, by using the auxiliary task, the models is still able
to avoid collisions.

Finally, DeepSocNavnoPreTrain is the variant with the
highest number of collisions. This supports our initial hy-
pothesis about the relevance of pre-training the model
using simulated data to avoid data scarcity problems.
In particular, our pre-training strategy generates an ini-
tial navigation scheme with obstacle avoidance and goal-
reaching capabilities. This can also be seen by consider-
ing our full model and DeepSocNavhalfPreTrain, where
DeepSocNavhalfPreTrain has almost the same Social Score
than the full model, but more than double the collisions.

V. CONCLUSIONS

In this work, we show the advantage of using the power of
current game engines, such as Unity, to improve the generation
of data to train social navigation agents. In particular, we
show the advantage of exploiting a method to extract first-
person view recordings of passers-by from bird-view datasets.
Similarly, we show the advantage of using simulated data from
a virtual environment to pre-train a model to obtain an initial
navigation scheme that include obstacle avoidance and goal-
reaching capabilities.

In particular, we demonstrate the advantages of the
information-rich first-person view by training DeepSocNav, an
LSTM-based model capable of navigating through a crowded
environment. Our results validate the impact of our proposed
strategy in terms of social navigation by outperforming all
baselines considered in this work. We also demonstrate the
relevance of using a short-term memory of previous views, as
well as, a prediction of the next depth frame, which is included
as an auxiliary task. We believe that the use of this type of
auxiliary tasks and self-supervised learning strategies might
play an important role to improve current social navigation
models.

REFERENCES

[1] The wisdom of crowds, December 2011. URL
https://www.economist.com/christmas-specials/2011/12/
17/the-wisdom-of-crowds.

[2] A. Alahi, V. Ramanathan, and L. Fei-Fei. Socially-
aware large-scale crowd forecasting. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2211–2218, 2014.

[3] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-
Fei, and S. Savarese. Social lstm: Human trajectory
prediction in crowded spaces. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 961–971, 2016.

[4] Javad Amirian, Bingqing Zhang, Francisco Valente Cas-
tro, Juan Jose Baldelomar, Jean-Bernard Hayet, and
Julien Pettre. Opentraj: Assessing prediction complexity
in human trajectories datasets. In Asian Conference
on Computer Vision (ACCV), number CONF. Springer,
2020.

[5] Y. F. Chen, M. Everett, M. Liu, and J. P. How. So-
cially aware motion planning with deep reinforcement
learning. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1343–1350,
2017.

[6] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P.
How. Decentralized non-communicating multiagent
collision avoidance with deep reinforcement learning.
CoRR, abs/1609.07845, 2016. URL http://arxiv.org/abs/
1609.07845.

[7] M. Fahad, Z. Chen, and Y. Guo. Learning how pedes-
trians navigate: A deep inverse reinforcement learning
approach. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 819–
826, 2018.

[8] Gonzalo Ferrer, Anaı́s Zulueta, Fernando Cotarelo, and
A. Sanfeliu. Robot social-aware navigation framework
to accompany people walking side-by-side. Autonomous
Robots, 41, July 2016. doi: 10.1007/s10514-016-9584-y.

[9] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social GAN: socially acceptable
trajectories with generative adversarial networks. CoRR,
abs/1803.10892, 2018. URL http://arxiv.org/abs/1803.
10892.

[10] M. Hamandi, M. D’Arcy, and P. Fazli. Deepmotion:
Learning to navigate like humans. In 2019 28th IEEE In-
ternational Conference on Robot and Human Interactive
Communication (RO-MAN), pages 1–7, 2019.

[11] Dirk Helbing and Peter Molnar. Social force model for
pedestrian dynamics. Physical Review E, 51, May 1998.
doi: 10.1103/PhysRevE.51.4282.

[12] Hanbyul Joo, Tomas Simon, Mina Cikara, and Yaser
Sheikh. Towards social artificial intelligence: Nonverbal
social signal prediction in A triadic interaction. CoRR,
abs/1906.04158, 2019. URL http://arxiv.org/abs/1906.
04158.

[13] Henrik Kretzschmar, Markus Spies, C. Sprunk, and
W. Burgard. Socially compliant mobile robot navigation
via inverse reinforcement learning. The International
Journal of Robotics Research, 35:1289 – 1307, 2016.

[14] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Every-
body needs somebody: Modeling social and grouping be-
havior on a linear programming multiple people tracker.
In 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 120–127,
2011.

[15] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski.
Crowds by example. Comput. Graph. Forum, 26:655–
664, September 2007. doi: 10.1111/j.1467-8659.2007.
01089.x.

[16] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras.
People tracking with human motion predictions from
social forces. In 2010 IEEE International Conference
on Robotics and Automation, pages 464–469, 2010.

[17] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool.
You’ll never walk alone: Modeling social behavior for
multi-target tracking. In 2009 IEEE 12th International
Conference on Computer Vision, pages 261–268, 2009.

[18] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Im-
proving data association by joint modeling of pedestrian
trajectories and groupings. In Kostas Daniilidis, Petros
Maragos, and Nikos Paragios, editors, Computer Vision
– ECCV 2010, pages 452–465, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-15549-9.

[19] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi,
and Silvio Savarese. Learning social etiquette: Human
trajectory understanding in crowded scenes. In Com-
puter Vision – ECCV 2016, volume 9912, pages 549–
565, October 2016. ISBN 978-3-319-46483-1. doi:
10.1007/978-3-319-46484-8 33.

[20] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza. Intro-
duction to autonomous mobile robots. 2004.

[21] Unity Technologies. Unity User Manual, 2018. URL
https://docs.unity3d.com/Manual/index.html.

[22] P. Trautman and A. Krause. Unfreezing the robot: Nav-
igation in dense, interacting crowds. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 797–803, 2010.

[23] Adrien Treuille, Seth Cooper, and Zoran Popović.
Continuum crowds. ACM Trans. Graph., 25(3):
1160–1168, July 2006. ISSN 0730-0301. doi: 10.
1145/1141911.1142008. URL https://doi.org/10.1145/
1141911.1142008.

[24] Chieh-En Tsai. A generative approach for socially
compliant navigation. Master’s thesis, Pittsburgh, PA,
June 2019.

[25] Chieh-En Tsai and Jean Oh. Navigan: A generative
approach for socially compliant navigation, 2020.

[26] Unity Technologies. Unity, May 2018. URL https://unity.
com. 2018.1.2f1.

[27] J. van den Berg, Ming Lin, and D. Manocha. Reciprocal
velocity obstacles for real-time multi-agent navigation.

https://www.economist.com/christmas-specials/2011/12/17/the-wisdom-of-crowds
https://www.economist.com/christmas-specials/2011/12/17/the-wisdom-of-crowds
http://arxiv.org/abs/1609.07845
http://arxiv.org/abs/1609.07845
http://arxiv.org/abs/1803.10892
http://arxiv.org/abs/1803.10892
http://arxiv.org/abs/1906.04158
http://arxiv.org/abs/1906.04158
https://docs.unity3d.com/Manual/index.html
https://doi.org/10.1145/1141911.1142008
https://doi.org/10.1145/1141911.1142008
https://unity.com
https://unity.com

In 2008 IEEE International Conference on Robotics and
Automation, pages 1928–1935, 2008.

[28] Anirudh Vemula, Katharina Mülling, and Jean Oh. Social
attention: Modeling attention in human crowds. CoRR,
abs/1710.04689, 2017. URL http://arxiv.org/abs/1710.
04689.

[29] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg.
Who are you with and where are you going? In CVPR
2011, pages 1345–1352, 2011.

http://arxiv.org/abs/1710.04689
http://arxiv.org/abs/1710.04689

	Introduction
	Proposed method
	Description of the problem
	First-person view data generation
	Data Augmentation
	DeepSocNav
	Head 1: Velocity prediction
	Head 2: Forecasting the future as an auxiliary task
	Loss function

	Experiments
	Results and Analysis
	Ablation analysis

	Conclusions

