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Abstract—In this work, we present a method for effective social
navigation by selecting navigation policies based on local social
context. Learning robotic navigation policies that are consistent
with inferred social norms is challenging as these norms are
often subjective, culturally dependent, task specific, and context
sensitive. While learning-based approaches to social navigation
have shown success, they must also be able to compete with
established classical algorithms that confer theoretical and prac-
tical advantages in simpler scenarios. Therefore, it is beneficial
to use the appropriate navigation algorithm depending on the
context. In this paper, we devise a hybrid method that combines
the strengths of both learned and analytical controllers to achieve
the best performance in scenarios with variable social complexity.
We show that such a combination strikes a favorable balance in
some performance metrics and even surpasses both individual
methods in others.

I. INTRODUCTION

This paper develops social navigation policies that allow a
robot to move through crowds in a manner that is consistent
with normal and polite human behavior. While there exists
effective strategies that allow robots to optimally navigate
spaces while avoiding obstacles [19], these policies can lead
to interactions which most humans would consider impolite
and disagreeable. Social navigation, which seeks to address
this problem, is traditionally treated as finding a single policy
that is appropriate for all situations. In practice, however,
navigation policies can vary by cultural region, social context,
task, and activity. It is reasonable to expect that people walking
out of a subway use different norms for speed, straightness-
of-path, and socially appropriate distance from those walking
down a warm beach.

In this paper, we investigate a multi-policy framework for
social navigation and show that contextual switching between
them improves performance. The title of this paper alludes to
the movie Toy Story [15]. Just as the toys in the film change
their behavioral policy when people are around, likewise
we suggest robotic agents should adapt their policies to the
presence of people and other robots. This paper examines the
development of context-dependent behavioral policies. Lever-
aging the strengths of such contextually-conditioned policies
leads to improved rate of successful navigation, while striking
a favorable trade-off in several navigation metrics.

1 Toy Story [15] is a popular animated movie.

II. BACKGROUND

Humans incorporate contextual cues and local information
into their decision making process when navigating an envi-
ronment. This is done with such effectiveness that navigation
in social contexts in the presence of other pedestrians seldom
requires our conscious consideration. By incorporating such
social and local information, social navigation algorithms seek
to imbue robotic agents with the same capabilities.

An early model for social navigation was the social forces
model developed by Helbing and Molnar [10]. Inspired by
physical systems, it models human crowds as force-exerting
particles. These forces can then be used to predict pedestrian
motion or to inform the motion of an artificial agent, and
have been used to study crowd dynamics [11]. This model,
while elegant, is often too simple to capture the most complex
pedestrian interactions that are not based on relative distances.

In the realm of robot motion planning, the method of
potential fields by Khatib [12] constructs a potential field
where repulsive forces from obstacles, both dynamic and
static, and an attractive force from the destination dictates the
motion of a robotic agent. Since this method naturally adapts
to dynamic obstacles, it has seen use for the social navigation
problem. One such instance is Svenstrup et al. [20] who use
rapidly exploring random trees (RRT) [16] to find socially
compliant navigation plans through a potential field.

Recently, deep reinforcement learning (DRL) has been
successful in solving high dimensional control tasks [7, 8].
An important factor in the success of DRL methods is the
reward function, which must be precisely engineered for most
complex tasks in order to achieve desired results. Chen et al.
[3] use DRL and one such engineered reward function to learn
a policy for social navigation. This method, however, relies
on the quality of the reward function, and the incorporation of
social navigation heuristics within. Such heuristics, however,
often defy codification attempts.

Inverse reinforcement learning (IRL) methods, on the other
hand, focus on learning such reward functions from demon-
stration, and can potentially alleviate the reward engineering
dilemma. Kretzschmar et al. [14] apply such an IRL approach
to social navigation, where trajectories are parameterized by
splines and a trajectory distribution is fit to the demonstrations.



Fahad et al. [5] make use of maximum entropy deep IRL
(MEDIRL) Wulfmeier et al. [21] using velocity-agumented
social affinity map (SAM) features Alahi et al. [1] to capture
position and motion information of surrounding pedestrians.
Konar et al. [13] use risk-features and a sampling-based
MEDIRL procedure to learn navigation policies. Baghi and
Dudek [2] use an efficient IRL algorithm, guided cost learning
(GCL) Finn et al. [6], in conjunction with a replay buffer
to simultaneously learn a reward function and policy. The
efficiencies obtained in the latter approach allows for the
learning of high quality policies and reward functions in a
sample efficient manner.

A. Multi-Policy Control

It is often the case that analytical and learned policies
perform best in specific contexts. Analytical methods often re-
quire lower computational resources and benefit from theoretic
guarantees, while policies trained using learning methods can
navigate complex environments but require intensive training.
It is natural, then, to carefully apply each method to the
appropriate context. For such context-aware policy selection,
Cunningham et al. [4] develop a framework for selecting
the most effective closed-loop policy for autonomous vehicle
control based on simulated horizons. Mehta et al. [18] apply a
similar framework for social navigation in crowded scenarios.

III. METHODOLOGY

A. Inverse Reinforcement Learning

Inverse reinforcement learning aims to learn the optimal
reward function from expert demonstration. By training on the
learned reward function, the expert behavior can be replicated.
This approach is particularly attractive for social navigation as
codifying it in a limited set of rules is difficult.

In this section, we provide an overview of ReplayIRL Baghi
and Dudek [2] which our method uses to obtain the socially
compliant policy it uses. We model pedestrians using a Markov
decision process (MDP). We consider the following MDP
M = {S,A, T ,R} where S is the set of states, A is the
set of actions, T = P (st+1|st, at) is the transition function,
and R is the reward function.

IRL considers the MDP without rewards, denoted M\R,
and aims to recover the rewards R from a set of expert demon-
strations DE = {τ1, τ2, . . . }. In this work, we consider trajec-
tories to be ordered sequences of states τ = {s1, s2, . . . , sT }.

To recover the rewards, Ziebart et al. [22] consider a
maximum entropy distribution over trajectories

P (τ) =
exp

(∑
s∈τ rθ(s)

)
Zθ

, (1)

where Zθ =
∫
τ
exp

(∑
s∈τ rθ(s)

)
is the partition function

which normalizes the above probability distribution and θ are
the parameters of the reward function rθ : S 7→ R. The optimal
parameters θ∗ can then be found through maximum likelihood
estimation (MLE). Wulfmeier et al. [21] use a neural network
to parameterize the reward function rθ, where θ now become

the weights of the neural network. This enables learning of
rich, non-linear reward functions.

For large state spaces, the partition function Zθ quickly
becomes intractable to compute as the number of trajectories
increase and thus must be approximated. Guided cost learning
(GCL), proposed by Finn et al. [6], adopts an importance
sampling approximation of the partition function

Zθ = Eτ∼q
exp

(∑
s∈τ rθ(s)

)
q(τ)

. (2)

Additionally, GCL trains a policy π(at|st) : S 7→ A at
each optimization iteration to use as the sampling distribution
q(τ). This leads to lower variance estimates of the partition
function [6]. Baghi and Dudek [2] show that by sharing the
replay buffer of an off-policy RL algorithm (e.g. soft actor
critic (SAC) [8]) with the IRL optimization procedure of
GCL, social navigation policies can be efficiently trained from
demonstration. In this work, we obtain our socially compliant
policies through the training procedure described in Baghi and
Dudek [2].

B. Potential Fields Implementation

The implementation of the potential field controller is
based on [12]. The motion of the agent is influenced by an
attractive force from the goal and repulsive forces from nearby
pedestrians. The attractive force is given by

~fattr = −kp(~x− ~xgoal)− kv~̇x (3)

where ~x and ~xgoal are the positions of the agent, and the
goal respectively. ~̇x is the velocity of the agent and kp, kv
are the hyperparameters, position gain, and velocity gain. The
repulsive force is given by

~frepi =

{
1
2η
(
1
ρ −

1
ρ0

)
1
ρ2

∂ρ
∂x if ρ ≤ ρ0

0 if ρ > ρ0
(4)

~frep =

O∑
i

~frepi (5)

where ρ is the shortest distance between the agent and the
obstacle i, ρ0 is the threshold distance within which obstacles
start exerting repulsive force on the agent, O is the set of all
obstacles and η is a hyperparameter that scales the repulsive
force.

The resultant force acting on the agent, given by

~ftotal = ~fattr + ~frep (6)

guides the agent in a collision-free path towards the goal.
While the original method [12] assumes a holonomic robot,

our agents are non-holonomic and are best approximated by
a robot whose action space consists of forward speed and
angular velocity. Possible forward velocities are in the range
[0, 1]m/s (no reverse motion allowed) and angular velocities
fall in the range [−π/6, π/6]. Additionally, we restrict turning
at high speed, so the desired speed is inversely proportional to



the change in orientation. The resultant force, ftotal, obtained
from (6), is mapped to the agent’s action space by equations

sf =
~ftotal · ~̇x
‖~̇x‖

1

θf
(7)

θf =
θfx
π

(8)

where, sf is the desired speed, θf is the change in orientation,
θfx is the signed angle between ~ftotal and ~̇x.

C. Multi-Policy Control

Our goal is to investigate the efficacy of the contextual appli-
cation both socially-conscious and potential fields policies for
navigation. To this end, we employ a straightforward hybrid
policy. In this approach, the euclidean distance between the
agent and the nearest pedestrian determines whether an IRL or
potential field policy is used to determine the action. We use
a threshold based-approach, whose value can be determined
experimentally for best results.

IV. EXPERIMENTS AND RESULTS

To evaluate our approach, we construct a multi-policy and
multi-agent simulation environment. The simulator represents
a top-down view of an open space that stages the movements
of a crowd. We use the publicly available UCY pedestrian
dataset [17]. Specifically, we use the student003 subset.
The starting positions of each pedestrian is dictated by the
dataset, and the goal position for each pedestrian is their
final dataset position. A subset of pedestrians are chosen
to be controlled by an external evaluation policy, while the
remainder simply follow the trajectories found in the dataset.
We evaluate our approach in scenarios with different ratios
of controlled to non-controlled pedestrians. We experiment
on 4 scenarios (1-4) where 10%, 30%, 70%, 90% of
the original pedestrians are replaced by agents respectively.
These represent a broad spectrum of possible situations, from
scenarios with a few robots mixed in a crowd of people
(house party with serving robots) to ones where a large
number of robots operate in the vicinity of a few humans
(warehouse robots with a few supervisors). As the policy
selection threshold, we use 2 meters, below which the IRL
policy for that agent is engaged.

For each scenario, we test on a set of metrics that capture
both standard navigational capabilities and social compliance.

1) Successful completion: Fraction of runs that reach the
designated goal position without any collisions.

2) Completion time: Number of time-steps required by the
policies to reach the goal position.

3) Distance to displacement ratio: Ratio of the length of
the trajectory traced by an agent to the distance of the
goal from the starting position. This metric measures the
directness of the path taken by an agent to reach its goal.

4) Intimate intrusions: Number of time-steps in which an
agent violated the intimate space of a pedestrian, defined
to be 1.2 meters, which is informed by the study of
proxemics [9].
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Fig. 1: Fraction of trajectories from different policies suc-
cessfully reaching the goal. Sub-figures (a)-(d) denote results
from scenarios 1-4. Across all the scenarios the mixed policy
outperforms the individual policies.

Our results suggest that across all the scenarios, the mixed
policy outperforms the individual policies in successfully
reaching the goal (Fig. 1). A plausible explanation for this
phenomenon is that while the socially trained IRL model
is better at avoiding pedestrians (outperforms potential fields
at higher densities of pedestrians), the potential field-based
agents are better at avoiding each other (outperforms IRL
model at higher densities of agents), and by combining them
the mixed policy enjoys the best of both worlds.

The potential field agents exhibit more aggressive move-
ments with higher speeds (figure 2) and more direct routes
towards the goal (figure 3). This leads to a faster completion
time (5), but also registers a higher number of violations of
the personal space (figure 4), which is not acceptable in a
social setting. In general, ignoring the rules often allows for
faster task execution. The mixed policy agent takes the middle
ground. In all the scenarios, it maintains social intrusion levels
comparable to the IRL agent and performs better at non-social
metrics like completion time and directness of route.

V. CONCLUSION AND FUTURE WORK

In this work, we investigate the efficacy of context-
dependant policy selection in an effort to maximize the
performance of both socially compliant and non-compliant
policies. As a proof of concept, we combine a socially
compliant IRL agent with a potential field controller and
compare its performance across different scenarios. We find
that the combined policy maintains a good balance of being
both a social and an efficient navigator. Possible future work
includes further consideration of complimentary policies and
data-driven methods for policy selection and application.
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Fig. 2: Average speed of agents controlled by different policies
across different scenarios. Agents controlled by the potential
field method exhibit higher speeds as compared to the IRL
agents, while the mixed policy speeds up in inverse proportion
to the number of pedestrians. That is, as the number of
agents in the scenario increases, the number of encounters
with pedestrians decreases and the average speed of the mixed
policy approaches that of the potential field method.
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Fig. 3: Average distance to displacement ratio of different
methods across different scenarios. While the potential field
method prefers direct routes to the goal, the IRL method fo-
cuses on social compliance irrespective of the actual presence
of pedestrians. In scenarios with higher pedestrian density,
the mixed policy behaves more like the IRL method. As
the number of pedestrians decreases, the need for social
compliance reduces and the policies start opting for optimal
navigation rather than social navigation.
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Fig. 4: Number of intimate intrusions incurred by different
policies across different scenarios. Sub-figures (a)-(d) denote
results from scenarios 1-4. Both the mixed policy and the IRL
method commits significantly less intrusions in the personal
space of pedestrians as compared to the potential field method.
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Fig. 5: completion time (in timesteps) by different policies
across different scenarios. Sub-figures (a)-(d) denote results
from scenarios 1-4. The potential field method has the lowest
completion time in all scenarios. The competitiveness of
the mixed policy is inversely proportional to the number of
pedestrians present in the scenario.
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